首页 | 本学科首页   官方微博 | 高级检索  
     

基于关联规则的数据挖掘方法在电厂脱硫监测中的应用
引用本文:陈俊杰,赵春胜. 基于关联规则的数据挖掘方法在电厂脱硫监测中的应用[J]. 内蒙古农业大学学报(自然科学版), 2012, 33(1): 194-197
作者姓名:陈俊杰  赵春胜
作者单位:1. 内蒙古农业大学计算机与信息工程学院,呼和浩特市,010018
2. 内蒙古自治区污染物在线监控中心,呼和浩特市,010010
摘    要:环境监管中对电厂的脱硫监测是监测的重点之一.文章将关联规则的数据挖掘方法有效地应用于电厂脱硫监测中.研究各个脱硫监测属性的相关性以及关联规则,提出了基于关联规则的参数波动模型、参数预测模型,并对该模型和挖掘方法进行了分析与实验,结合实际的脱硫监测数据进行了论证,说明了模型的使用在实际脱硫监测工作中具有良好的效果.

关 键 词:脱硫监测  数据挖掘  关联规则

BASED ON ASSOCIATION RULES DATA MINING METHOD AND APPLICATION IN FLUE GAS DESULFRUIZATION MONITOR OF ELECTRIC POWER
CHEN Jun-jie , ZHAO Chun-sheng. BASED ON ASSOCIATION RULES DATA MINING METHOD AND APPLICATION IN FLUE GAS DESULFRUIZATION MONITOR OF ELECTRIC POWER[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2012, 33(1): 194-197
Authors:CHEN Jun-jie    ZHAO Chun-sheng
Affiliation:1.College of Computer and Information Engineering of Inner Mongolia Agricultural University,Hohhot 010018,China; 2.pollution monitoring center line of Inner Mongolia,Hohhot 010010,China)
Abstract:Flue gas desulfurization monitor is very important in environment monitor.In this paper,it applies the association rules in flue gas desulfurization monitor.It uses real data establish fluctuations model and forecast model based on association rule.It is proved that the model meet to the actual requirements through the experiment and analysis.The model can take good effect in flue gas desulfurization monitor.
Keywords:Flue gas desulfurization monitor  data mining  association rule
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号