首页 | 本学科首页   官方微博 | 高级检索  
     检索      


5-Hydroxy-3,6,7,8,3',4'-hexamethoxyflavone induces apoptosis through reactive oxygen species production, growth arrest and DNA damage-inducible gene 153 expression, and caspase activation in human leukemia cells
Authors:Pan Min-Hsiung  Lai You-Syuan  Lai Ching-Shu  Wang Ying-Jan  Li Shiming  Lo Chih-Yu  Dushenkov Slavik  Ho Chi-Tang
Institution:Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan. mhpan@mail.nkmu.edu.tw
Abstract:This study examined the growth inhibitory effects of structurally related polymethoxylated flavones in human cancer cells. Here, we report that 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF) induces growth inhibition of human cancer cells and induction of apoptosis in HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 5-OH-HxMF-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that 5-OH-HxMF induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bax was found in 5-OH-HxMF-treated HL-60 cells. In addition, a caspase-independent pathway indicated by endonuclease G also contributed to apoptosis caused by 5-OH-HxMF. Antioxidants suppress 5-OH-HxMF-induced apoptosis. 5-OH-HxMF markedly enhanced growth arrest DNA damage-inducible gene 153 (GADD153) protein in a time-dependent manner. N-acetylcysteine (NAC) and catalase prevented up-regulation of GADD153 expression caused by 5-OH-HxMF. These findings suggest that 5-OH-HxMF creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in HL-60 cells. Meanwhile, ROS were proven an important inducer in this apoptotic process. The C-5 hydroxyl on the ring of 5-OH-HxMF was found to be essential for the antiproliferative and apoptosis-inducing activity. Our study identified the novel mechanisms of 5-OH-HxMF-induced apoptosis and indicated that these results have significant applications as potential chemopreventive and chemotherapeutic agents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号