首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forest harvest patterns and landscape disturbance processes
Authors:Tang  Swee May  Franklin  Jerry F  Montgomery  David R
Institution:(1) Department of Biological Sciences, Bethel College, 3900 Bethel Drive, St. Paul, MN 55112, USA;(2) College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100, USA;(3) Department of Geological Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310, USA
Abstract:A physically-based model of the topographic influence on debris flow initiation and a rule-based model for wind damage were used to assess the influence of forest clearcutting patterns (i.e., location, size, shape and distribution of cut units) on the potential for landscape disturbance by these processes in Charley Creek watershed, Washington State, USA. Simulated clearcutting patterns consisted of 7, 9 or 26 ha square or rectangular harvest units distributed in either an aggregated or dispersed pattern under three stream-buffering scenarios. The slope-stability model predicted that potentially unstable ground is concentrated along steep headwater streams and inner-gorge side-slopes. Areas susceptible to wind damage were determined from the combination of slope, aspect, elevation, soil drainage and primary tree species. Among the variables examined here, the location of harvest units constitutes the most important factor influencing the potential for shallow landsliding. In contrast, the location, size, and shape of clear cuts and the interactions among these three factors significantly influenced the potential for wind damage. Minimal correspondence between areas predicted to be potentially unstable and areas susceptible to wind damage implies that harvest patterns designed to mitigate the potential for shallow landsliding may not necessarily reduce the potential for wind damage. Our results demonstrate that: (1) the location of timber harvesting is more important than the geometry of harvest activity in influencing shallow landsliding; (2) forest harvest patterns strongly influence the potential for disturbance processes; and (3) a single cutting pattern will often fail to meet all landscape management goals. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:GIS  simulation models  landscape pattern  debris flows  wind damage  forest harvesting  Washington State  USA
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号