首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigating Disease Spread between Two Assessment Dates with Permutation Tests on a Lattice
Authors:Thébaud Gaël  Peyrard Nathalie  Dallot Sylvie  Calonnec Agnès  Labonne Gérard
Abstract:ABSTRACT Mapping and analyzing the disease status of individual plants within a study area at successive dates can give insight into the processes involved in the spread of a disease. We propose a permutation method to analyze such spatiotemporal maps of binary data (healthy or diseased plants) in regularly spaced plantings. It requires little prior information on the causes of disease spread and handles missing plants and censored data. A Monte Carlo test is used to assess whether the location of newly diseased plants is independent of the location of previously diseased plants. The test takes account of the significant spatial structures at each date in order to separate nonrandomness caused by the structure at one date from nonrandomness caused by the dependence between newly diseased plants and previously diseased plants. If there is a nonrandom structure at both dates, independent patterns are simulated by randomly shifting the entire pattern observed at the second date. Otherwise, independent patterns are simulated by randomly reallocating the positions of one group of diseased plants. Simulated and observed patterns of disease are then compared through distance-based statistics. The performance of the method and its robustness are evaluated by its ability to accurately identify simulated independent and dependent bivariate point patterns. Additionally, two realworld spatiotemporal maps with contrasting disease progress illustrate how the tests can provide valuable clues about the processes of disease spread. This method can supplement biological investigations and be used as an exploratory step before developing a specific mechanistic model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号