首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil
Authors:Jaroslav ?najdr  Vendula Valá?ková  Veˇra Merhautová  Jana Herinková  Tomá? Cajthaml  Petr Baldrian
Institution:Laboratory of Biochemistry of Wood-Rotting Fungi, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic;School of Land, Crop and Food Sciences, The University of Queensland, Brisbane, Qld. 4072, Australia
Abstract:Extracellular lignocellulose-degrading enzymes are responsible for the transformation of organic matter in hardwood forest soils. The spatial variability on a 12 × 12 m plot and vertical distribution (0–8 cm) of the ligninolytic enzymes laccase and Mn-peroxidase, the polysaccharide-specific hydrolytic enzymes endoglucanase, endoxylanase, cellobiohydrolase, 1,4-β-glucosidase, 1,4-β-xylosidase and 1,4-β-N-acetylglucosaminidase and the phosphorus-mineralizing acid phosphatase were studied in a Quercus petraea forest soil profile. Activities of all tested enzymes exhibited high spatial variability in the L and H horizons. Acid phosphatase and 1,4-β-N-acetylglucosaminidase exhibited low variability in both horizons, while the variability of Mn-peroxidase activity in the L horizon, and endoxylanase and cellobiohydrolase activities in the H horizon were very high. The L horizon contained 4× more microbial biomass (based on PLFA) and 7× fungal biomass (based on ergosterol content) than the H horizon. The L horizon also contained relatively more fungi-specific and less actinomycete-specific PLFA. There were no significant correlations between enzyme activities and total microbial biomass. In the L horizon cellulose and hemicellulose-degrading enzymes correlated with each other and also with 1,4-β-N-acetylglucosaminidase and acid phosphatase activities. Laccase, Mn-peroxidase and acid phosphatase activities correlated in the H horizon. The soil profile showed a gradient of pH, organic carbon and humic compound content, microbial biomass and enzyme activities, all decreasing with soil depth. Ligninolytic enzymes showed preferential localization in the upper part of the H horizon. Differences in enzyme activities were accompanied by differences in the microbial community composition where the relative amount of fungal biomass decreased and actinomycete biomass increased with soil depth. The results also showed that the vertical gradients occur at a small scale: the upper and lower parts of the H horizon only 1 cm apart were significantly different with respect to seven out of nine activities, microbial biomass content and community composition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号