Enhanced anti-inflammatory activities of Monascus pilosus fermented products by addition of ginger to the medium |
| |
Authors: | Chen Chin-Chu Chyau Charng-Cherng Liao Chen-Chung Hu Tzu-Jung Kuo Chia-Feng |
| |
Affiliation: | Grape King Biotechnology Center, Chung-Li City, Taiwan. |
| |
Abstract: | Hypercholesterolemia initiates the atherogenic process; however, chronic inflammation promotes atherogenesis. Monascus spp. fermented products are recognized for their anti-hypercholesterolemic effect, but their anti-inflammatory activity is not as significant as that of many plant-derived foods. To enhance the anti-inflammatory function of Monascus pilosus fermented products, ginger was added to the PDB medium at a ratio of 20% (v/v). The mycelia and broth were collected, freeze-dried, and extracted by ethanol for assays. Macrophage RAW264.7 was challenged with lipopolysaccharide (LPS) and coincubated with the extracts of fermented product cultured in ginger-supplemented medium (MPG) or extracts of fermented product cultured in regular PDB medium (MP) for 18 h. Human umbilical vein endothelial cell HUVEC was challenged with tumor necrosis factor (TNF)-α and coincubated with the extracts of either MPG or MP for 6 h. The results showed that MPG significantly (p<0.05) lowered the production of macrophage pro-inflammatory cytokines TNF-α, nitric oxide (NO), interleukin (IL)-1, IL-6, and prostaglandin E2 (PGE2) by 68.53%, 84.29%, 32.55%, 84.49%, and 69.49%, respectively; however, MP had no inhibitory effect. MPG significantly downregulated the expression of p-IκB, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in macrophage by 42.16%, 50.87%, and 51.35%, respectively, while MP had no inhibition on COX-2 expression and only 16.64% and 19.22% downregulatory effect on iNOS and phosphorylated-IκB (p-IκB), respectively. Moreover, MPG significantly suppressed the expression of vessel cell adhesion molecule-1 (VCAM-1) and p-IκB in endothelial cell by 63.48% and 63.41%, respectively. LC/MS/MS analysis indicated that 6-gingerdiol was formed in the ginger-modified medium during fermentation. The results of this study will facilitate the development of Monascus spp. fermented products as antiatherosclerotic nutraceuticals. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|