首页 | 本学科首页   官方微博 | 高级检索  
     


Sodium Chloride Effects on Water and Nutrient Uptake Efficiency in Sarcocornia fruticosa Containerized Production
Authors:Pedro García-Caparrós  Alfonso Llanderal
Affiliation:Agronomy Department of Engineering Higher School, University of Almeria, Almería, Spain
Abstract:The ability to produce native plants well adapted to the saline conditions without the production of nutrient-rich runoff will be a boon to nurseries hoping to reduce their environmental contamination impact and water use while at the same time producing quality plants to be used in the restoration of saline lands. Sarcocornia fruticosa plants were grown for 8 weeks in plastic containers with a source of sphagnum peat moss and perlite (80:20 v/v) to evaluate the effect of two salinity levels (2.0 (low-salinity treatment) and 7.5 dS m?1 (high-salinity treatment)) on plant growth, nutrient concentration in leachate and water and nutrient uptake efficiency and their losses. Leachate was collected to determine the runoff volume and composition, which included nitrate-nitrogen (NO3N), phosphate-phosphorus (PO43–P) and potassium (K+) concentrations. Plant dry weight (DW) and nutrient content were determined in plants at the beginning and at the end of the experiment to establish the nutrient balance. Increasing salinity levels of irrigation water did not reduce either the plant DW or the water-use efficiency (WUE), but increased the volume of leachate per plant. The nutrient concentrations in leachates without significant differences between salt treatments exceeded the thresholds established by environmental guidelines, leading to a great risk of pollution. Based on nutrient balance, the irrigation with a higher salinity level reduced the plant nutrient uptake efficiency (10%, 18% and 12% for nitrogen (N), phosphorus (P) and potassium (K), respectively) and increased the nutrient losses (6% N, 7% P and 8% K), resulting in the recommendation to grow this species with the low salinity level based on the highest nutrient-use efficiency and the lowest levels of nutrient losses.
Keywords:Anions  Best Management Practices (BMPs)  cations  environmental pollution  halophytes  leachate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号