首页 | 本学科首页   官方微博 | 高级检索  
     

基于T-S模糊神经网络预测算法的管道泄漏定位研究与分析
引用本文:李华杰. 基于T-S模糊神经网络预测算法的管道泄漏定位研究与分析[J]. 湖南农业大学学报(自然科学版), 2016, 0(3): 63-67
作者姓名:李华杰
作者单位:(中石油中亚天然气管道有限公司,北京,100007)
摘    要:长输管道的泄漏检测和定位对管道安全平稳运行意义极其重大,在以软件计算为主的检测方法里,模糊神经网络模型综合了模糊算法和神经网络模型的优点,能较好地适应长输管道的非线性特征。本文采用中亚地区某管道某相邻两站场的历史数据训练基于高木-关野(Takagi-Sugeno)模糊神经网络的预测模型,使用STONER管道仿真软件产生实时数据,用一种较简单的软方法较好的实现管道泄漏定位,该种方法对中亚某长输管道这类没有专门硬件泄漏检测设备和系统的管线有一定的实用意义。

关 键 词:长输管道;泄漏检测;模糊;神经网络

Study and Analysis of Gas Pipeline Leak Location Based on T-S Fuzzy Neural Network Prediction Algorithm
LI Hua-jie. Study and Analysis of Gas Pipeline Leak Location Based on T-S Fuzzy Neural Network Prediction Algorithm[J]. Journal of Hunan Agricultural University, 2016, 0(3): 63-67
Authors:LI Hua-jie
Abstract:Leak detection and location of long-distance pipeline are of significance for safe operation. Among the detection methods based on computing software, the fuzzy neural network model combines the advantages of fuzzy algorithm and neural network model, and can better adapt to long-distance pipeline characterized by nonlinearity. This paper used the historical data from two neighbored gas compressor stations of Central Asia Gas Pipeline to train the model based on Takagi-Sugeno fuzzy neural network forecasting algorithm, and used STONER pipeline simulation software to generate real-time data. Thus, a relatively simple method on soft computing realized leak location of pipeline, which is of some practical significance to the pipelines without special leak detection devices, such as Central Asia Gas Pipeline.
Keywords:Long-distance pipeline  leak detection  fuzzy  neural network
点击此处可从《湖南农业大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南农业大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号