首页 | 本学科首页   官方微博 | 高级检索  
     

多元空间分次插值适定结点组的几何结构
引用本文:徐艳,野金花,崔利宏. 多元空间分次插值适定结点组的几何结构[J]. 黑龙江八一农垦大学学报, 2009, 21(6): 80-82
作者姓名:徐艳  野金花  崔利宏
作者单位:黑龙江八一农垦大学文理学院,大庆,163319;辽宁师范大学数学学院
摘    要:利用代数几何学中关于理想和代数簇的理论,我们研究了代数超曲面上分次插值适定结点组的几何结构,通过上述理论的研究,并利用无重复分量代数超曲面上的分次插值适定结点组的构造方法,我们又得到了构造高维空间中分次插值适定结点组的递归构造方法,从而初步弄清了多元分次Lagrange插值适定结点组的几何结构。

关 键 词:多元多项式  适定结点组  分次插值  Lagrange插值  多元插值

The Geometrical Structure of Properly Posed Set of Nodes for Graded Interpolation which in the Multiple Space
Xu Yan,Ye Jinhua,Cui Lihong. The Geometrical Structure of Properly Posed Set of Nodes for Graded Interpolation which in the Multiple Space[J]. journal of heilongjiang bayi agricultural university, 2009, 21(6): 80-82
Authors:Xu Yan  Ye Jinhua  Cui Lihong
Affiliation:Xu Yan, Ye Jinhua, Cui Lihong (1.College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319; 2.School of Mathematics,Liaoning Normal University)
Abstract:Use the results of algebraic variety and ideal in algebraic geometry,we study the geometrical structure of properly posed set of nodes for graded interpolation on algebraic hypersurface,more over,we give a Hyperplane Superposition Process to constuct the properly posed set of nodes for graded interpolation on algebraic hypersurface,therefore we make clear the geometrical structure of properly posde set of nodes for multivariate graded interpolation basically.
Keywords:mutivariate polynomial  porperly posed set of nodes  graded interpolation  Lagrange interpolation  multivariate interpolation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号