首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ALUMINIUM TOXICITY AND TOLERANCE IN THREE HEATHLAND SPECIES
Authors:de Graaf  Maaike C C  Bobbink  Roland  Verbeek  Peter J M  Roelofs  Jan G M
Institution:1. Department of Ecology, Researchgroup Environmental Biology, University of Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
Abstract:Arnica montana and Cirsium dissectum are characteristic species of species-rich heathlands and adjacent grasslands, which declined during the last decades in the Netherlands. It has been shown in a recent field survey that the decline of A. montana and C. dissectum might be caused by soil acidification. Calluna vulgaris is not susceptible to soil acidification. It was hypothesized that increased aluminium concentrations in the soil as a result of acidifying atmospheric inputs caused the decline of A. montana and C. dissectum whereas C. vulgaris would not be sensitive to enhanced aluminium concentrations. We studied the effects of different Al:Ca-ratios and of Al concentrations on the development of A. montana, C. dissectum and C. vulgaris in nutrient solution experiments. All three species showed aluminium accumulation in the shoots related with increased aluminium concentrations in the nutrient solutions. This accumulation was correlated with a reduction in growth when plants were cultured at high Al concentrations (200–500 µmol l-1), in both A. montana and C. dissectum. In addition, indications of Al toxicity were observed in these plant species, e.g. poor root development, yellowish leaves and reduced contents of Mg and P in the plants. C. vulgaris did not show reduced growth or poor plant development due to high Al concentrations. The negative effects of aluminium in A. montana and C. dissectum were partly counterbalanced when plants were grown on the same Al concentrations but with increased Ca concentrations, resulting in lower Al:Ca-ratios. No effects of enhanced calcium concentrations on C. vulgaris have been observed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号