首页 | 本学科首页   官方微博 | 高级检索  
     

小麦品种辽春10抗叶锈病基因LrLC10的比较基因组学定位
引用本文:吕欣迪,唐华山,耿妙苗,米阳阳,李映辉,李峰,刘培园,解超杰,孙其信. 小麦品种辽春10抗叶锈病基因LrLC10的比较基因组学定位[J]. 中国农业大学学报, 2017, 22(4): 1-9
作者姓名:吕欣迪  唐华山  耿妙苗  米阳阳  李映辉  李峰  刘培园  解超杰  孙其信
作者单位:中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193;中国农业大学 农学院/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室, 北京 100193
基金项目:科技部仪器专项项目(2011YQ080052);国家自然科学基金项目(31271708)
摘    要:为明确小麦品种辽春10对叶锈菌小种PHT抗病的遗传基础,利用感病小麦材料87-1与抗病小麦材料辽春10构建的F_(2:3)群体,对其进行成株期抗病性鉴定和遗传分析。结果表明,辽春10中含有1个显性抗叶锈病基因,暂命名为LrLC10。利用BSA法和比较基因组学策略对该抗病基因进行分子标记分析,将LrLC10定位于小麦2BS染色体上。共构建了含有8个分子标记的LrLC10基因的连锁图,其中:CAUT253位于LrLC10的远着丝粒侧,距离为0.1cM;CAUT163和CAUT131与LrLC10共分离;CAUT239位于LrLC10的近着丝粒侧,遗传距离为0.5cM。

关 键 词:小麦叶锈病  辽春10  SSR  EST  比较基因组学
收稿时间:2016-03-27

Comparative genomics analysis of leaf rust resistance gene LrLC10 in common wheat cultivar Liaochun10
LV Xindi,TANG Huashan,GENG Miaomiao,MI Yangyang,LI Yinghui,LI Feng,LIU Peiyuan,XIE Chaojie and SUN Qixin. Comparative genomics analysis of leaf rust resistance gene LrLC10 in common wheat cultivar Liaochun10[J]. Journal of China Agricultural University, 2017, 22(4): 1-9
Authors:LV Xindi  TANG Huashan  GENG Miaomiao  MI Yangyang  LI Yinghui  LI Feng  LIU Peiyuan  XIE Chaojie  SUN Qixin
Affiliation:College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China;College of Agronomy/State Key Laboratory of Agri-Biotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China
Abstract:Common wheat (Triticum aestivum) cultivar Liaochun10 is resistant to leaf rust(Puccinia triticina)race PHT.In order to identify the genetic basis of resistance,resistance test and genetic analysis are conducted on adult plants of F2:3 populations derived from the cross between susceptible parent 87-1 and resistant cultivar Liaochun10.The results show that Liaochun10 carries a single dominant resistance gene,which is effective at adult stage,temporally designated LrLC10. Using bulked segregant analysis and comparative genomics analysis,genetic map of LrLC10 was established with eight markers.Among these markers, CAUT253 were distal to LrLC10 with a genetic distance of 0.1 cM; CAUT163 and CAUT131 were co-segregated segregated with resistant gene; CAUT239 were proximal to LrLC10,the genetic distance is 0.5 cM.
Keywords:wheat leaf rust  Liaochun 10  SSR  EST  comparative genomics
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农业大学学报》浏览原始摘要信息
点击此处可从《中国农业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号