首页 | 本学科首页   官方微博 | 高级检索  
     


Swelling of biocrusts upon wetting induces changes in surface micro-topography
Affiliation:1. Departamento de Agronomía, Universidad de Almería, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain;2. Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain
Abstract:In most of non-vegetated areas from drylands, soils are colonized by biocrusts, and although they represent a small fraction of the soil profile, they strongly affect several soil surface properties, such as porosity, available nitrogen and carbon content, hydrophobicity or micro-topography. The influence of BSCs on these soil properties has effects on numerous ecosystem processes, including water retention and runoff generation. Previous studies on the hydrological and erosive response of soils covered by biocrusts have highlighted the role of soil surface roughness as a key variable for understanding the influence of biocrusts on runoff and erosion, but biocrusts' effects on surface micro-topography varies depending on crust water content. Biocrusts can absorb large amounts of water in a short period of time, increasing their volume and modifying surface micro-topography, this change depending on biocruts type and development. A correct characterization of these surface variations may increase the knowledge about hydrological response of biocrusts, and for this reason, accurate ground level measurements of biologically crusted surfaces are essential. The objective of this study is to analyze the effect of wetting on surface micro-topography of biologically crusted soils. To achieve this objective, different crust types were scanned in the laboratory with high resolution laser scanner. Five samples were collected for each of the 4 different crust types (bare soil, cyanobacteria biocrust, and two different lichen biocruts). Two different scans were made in each sample, in dry and wet conditions. Random roughness (RR) was calculated for data from every scan, and the RR indexes obtained before and after wetting were compared. According with our initial hypothesis, an increase in surface height and surface roughness up to 0.24 and 0.20 mm respectively was observed in more developed lichen biocruts, under wet conditions respect to dry ones. These differences, despite being very subtle, could exert strong implications on runoff generation, and water evaporation, and show the complex interactions between biocruts, surface micro-topography and water fluxes.
Keywords:Biological soil crust  Roughness  Drylands soils  Infiltration  Crust development  Water absorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号