首页 | 本学科首页   官方微博 | 高级检索  
     

Effects of moisture and carbonate additions on CO_2 emission from calcareous soil during closed–jar incubation
引用本文:YanJie DONG,Miao CAI,JianBin ZHOU. Effects of moisture and carbonate additions on CO_2 emission from calcareous soil during closed–jar incubation[J]. 干旱区科学, 2014, 6(1): 37-43. DOI: 10.1007/s40333-013-0195-6
作者姓名:YanJie DONG  Miao CAI  JianBin ZHOU
作者单位:College of Natural Resources and Environment,Northwest A&F University;Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China,Ministry of Agriculture
基金项目:supported by the National Natural Science Foundation of China(40773057);the National Technology R&D Pillar Program in the 12th Five-Year Plan of China(2012BAD15B04)
摘    要:Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture,but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content(air-dried,30%,70%,and 100% water-holding capacity(WHC)),carbonate type(CaCO3 or MgCO3),and carbonate amount(0.0,1.0%,and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC,regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC,soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC,CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore,CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation.

关 键 词:calcareous soil  soil moisture  organic carbon  CO2 emission
收稿时间:2012-12-27

Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed–jar incubation
YanJie DONG. Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed–jar incubation[J]. Journal of Arid Land, 2014, 6(1): 37-43. DOI: 10.1007/s40333-013-0195-6
Authors:YanJie DONG
Affiliation:1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;2. Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
Abstract: Calcareous soil contains organic and inorganic carbon (C) pools, which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture, but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content (air-dried, 30%, 70%, and 100% water-holding capacity (WHC)), carbonate type (CaCO3 or MgCO3), and carbonate amount (0.0, 1.0%, and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC, regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC, soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC, CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore, CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3–6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation.
Keywords:calcareous soil  soil moisture  organic carbon  2 emission')"   href="  #"  >CO2 emission
本文献已被 CNKI 等数据库收录!
点击此处可从《干旱区科学》浏览原始摘要信息
点击此处可从《干旱区科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号