首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of resistance to fenoxaprop in Japanese foxtail (Alopecurus japonicus) from China
Authors:Hongle Xu  Xudong Zhu  Hongchun Wang  Jun Li  Liyao Dong
Affiliation:1. College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;2. Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China;3. College of Science, Nanjing Agricultural University, Jiangsu Key Laboratory of Pesticide Science, Nanjing 210095, China
Abstract:Japanese foxtail is one of the most common and troublesome weeds infesting cereal and oilseed rape fields in China. Repeated use during the last three decades of the ACCase-inhibiting herbicide fenoxaprop-P-ethyl to control this weed has resulted in the occurrence of resistance. Dose–response tests established that a population (AHFD-1) from eastern China had evolved high-level resistance to fenoxaprop-P-ethyl. Based on the resistance index, this resistant population of A. japonicus is 60.31-fold resistant to fenoxaprop-P-ethyl. Subsequently, only a tryptophan to cysteine substitution was identified to confer resistance to fenoxaprop-P-ethyl in this resistant population. ACCase activity tests further confirmed this substitution was linked to resistance. This is the first report of the occurrence of Trp-2027-Cys substitution of ACCase in A. japonicus. From whole-plant pot dose–response tests, we confirmed that this population conferred resistance to other APP herbicides, including clodinafop-propargyl, fluazifop-P-butyl, quizalofop-P-ethyl, haloxyfop-R-methyl, cyhalofop-butyl, metamifop, DEN herbicide pinoxaden, but not to CHD herbicides clethodim, sethoxydim. There was also no resistance observed to ALS-inhibiting herbicides sulfosulfuron, mesosulfuron-methyl, flucarbazone-sodium, pyroxsulam, Triazine herbicide prometryne and glyphosate. However, this resistant population was likely to confer slightly (or no) resistant to Urea herbicides chlortoluron and isoproturon.
Keywords:Herbicide resistance   Acetyl-CoA carboxylase   Amino acid substitution   Cross-resistance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号