首页 | 本学科首页   官方微博 | 高级检索  
     

基于土壤类型和微量元素辅助信息的土壤属性空间模拟
引用本文:石淑芹,陈佑启,李正国,杨 鹏,吴文斌,姚艳敏. 基于土壤类型和微量元素辅助信息的土壤属性空间模拟[J]. 农业工程学报, 2010, 26(12): 199-205. DOI: 10.3969/j.issn.1002-6819.2010.12.034
作者姓名:石淑芹  陈佑启  李正国  杨 鹏  吴文斌  姚艳敏
作者单位:1. 农业部资源遥感与数字农业重点开放实验室,北京,100081;天津工业大学管理学院,天津,300387
2. 农业部资源遥感与数字农业重点开放实验室,北京,100081;中国农科院农业资源与农业区划研究所,北京,100081
基金项目:国家重点基础研究发展计划“973”计划项目(2010CB951500);国家自然科学基金项目(40930101和40801221);农业部资源遥感与数字农业重点开放实验室基金(RDA1010);天津市高等学校人文社会科学研究项目(20092115);教育部人文社会科学研究项目(10YJCZH129)
摘    要:为探讨大尺度区域土壤属性空间化的方法,以吉林省为例,研究土壤养分(pH值、有机质、速效磷、速效钾和碱解氮)和地形地貌、微量元素等变量之间的关系;并在考虑土壤类型基础上,将相关性较高的变量作为协因子进行土壤养分的Cokriging插值研究。结果表明,pH值与经度、有效铁、锰和速效氮的相关系数分别高达-0.66、-0.71、-0.70和-0.67;有机质与经度、pH值、有效钙、锰的相关系数分别为0.55、-0.58、0.56和0.52;碱解氮与经度、纬度、pH值、有效铁、锌的相关系数分别为0.57、-0.57、-0.67、0.56、0.54;速效磷与速效钾、有效锌的相关系数分别为0.67和0.64。分析发现以相关性较高的微量元素作为协因子进行Cokriging插值精度均优于采用地形变量作为协因子的Cokriging插值。交叉检验和检验站验证结果表明,与普通Kriging相比,基于土壤类型和微量元素的Cokriging插值在增加估值精度方面有所提高。

关 键 词:土壤,计算机仿真,插值,微量元素
收稿时间:2010-03-25
修稿时间:2010-09-08

Spatial interpolation of soil properties based on soil types and trace micro-elements
Shi Shuqin,Chen Youqi,Li Zhengguo,Yang Peng,Wu Wenbin and Yao Yanmin. Spatial interpolation of soil properties based on soil types and trace micro-elements[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 199-205. DOI: 10.3969/j.issn.1002-6819.2010.12.034
Authors:Shi Shuqin  Chen Youqi  Li Zhengguo  Yang Peng  Wu Wenbin  Yao Yanmin
Abstract:To develop the methodology for spatialization of large scale soil property, we firstly investigated the relationship between soil properties and environmental factors in Jilin province located in Northeast China. Secondly, with a consideration of soil types, the relevant factors were utilized as co-factors for interpolating soil properties by using the means of Cokriging technique. The results showed that soil pH value, soil organic matter and alkali-hydrolyzable N were generally correlated with latitude and longitude. In details, soil pH value had an obviously negative correlation with longitude (-0.66), available iron (-0.71), manganese (-0.70) and active nitrogen (-0.67); Negative correlation could be found between soil organic matter and soil pH value (-0.58), while positive between soil organic matter and longitude (0.55), available calcium (0.560) and manganese (0.52); in addition, alkali-hydrolyzable N was negatively correlated with soil pH (-0.67) and latitude (-0.57), and positively correlated with longitude (0.57), available iron (0.56) and zinc (0.54); and active phosphorus had an obviously positive correlation with active potassium (0.67) and zinc (0.64). By contrast, the accuracy of Cokriging interpolations used with more relevant co-factors (i.e. trace elements) was obviously higher than the interpolations with other factors (i.e. topographic factors). In addition, the verification results of cross-validation and testing station also prove that accuracy of Cokrigng interpolations is higher than ordinary Kriging.
Keywords:soils   computer simulation   interpolation   trace elements
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号