首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络在农用运输车可靠性计算中的应用
引用本文:王金武,刘大海. 神经网络在农用运输车可靠性计算中的应用[J]. 农业工程学报, 2006, 22(8): 102-105
作者姓名:王金武  刘大海
作者单位:东北农业大学工程学院,哈尔滨,150030;成都理工大学应用核技术及自动化工程学院,成都,610059
基金项目:黑龙江省教育厅科学技术研究项目
摘    要:农用运输车是中国农村现阶段的一种简化的运输车辆,为农村的经济建设和发展发挥了很大的作用,但它使用可靠性低。针对目前农用运输车使用可靠性低的现状,采用截尾跟踪试验方法,对某机型进行了跟踪试验,获得了农用运输车相关的可靠性数据,分析得到其最薄弱环节是发动机总成;应用人工神经网络系统理论,提出基于自适应线性神经网络的可靠性模型参数估计方法,得出了农用运输车相关参数的可靠度函数表达式,为农用运输车设计的可靠性重新分配、制造和管理使用提供理论参考依据。

关 键 词:农用运输车  可靠性模型  神经网络
文章编号:1002-6819(2006)08-0102-04
收稿时间:2005-10-18
修稿时间:2006-04-15

Estimation of the reliability of farm transport vehicle based on artificial neural network
Wang Jinwu and Liu Dahai. Estimation of the reliability of farm transport vehicle based on artificial neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(8): 102-105
Authors:Wang Jinwu and Liu Dahai
Affiliation:College of Engineering, Northeast Agricultural University, Harbin 150030, China;College of Applied Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
Abstract:As a peculiar product in China today, farm transport vehicles play a very important role in economic construction and development of the countryside, but its work reliability remains low. In this paper truncated tracking is used to solve the low reliability of farm transport vehicles. Relevant reliability data were obtained by tracking a certain model vehicle and conducting reliability experiments. Data analysis revealed the weakest part of the vehicle system was the engine assembly. The theory of artificial neural network was employed to estimate a parameter of the reliability model based on self-adaptive linear neural network, and the reliability function educed by the estimation could provide important theory references for reliability reassignment, manufacture and management of farm transport vehicles.
Keywords:farm transport vehicle   reliability model   neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号