首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of inulin and oligofructose enrichment of the diet on rats suffering thiamine deficiency
Authors:D?bski B  Kury? T  Gralak M A  Pierzynowska J  Drywień M
Institution:Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Warsaw, Poland. bogdan_debski@sggw.pl
Abstract:Thiamine deficiency resulted in inhibition of two main pathways supplying energy to the tissues: glycolysis and β-oxidation. Glycolysis was found to be inhibited to 40% of initial value calculated on the basis of RBC trans-membrane transport of glucose. Prolongation of experiment cause lowering of uptake of this sugar. In rats, energy production from fatty acids (FA) seems to be less sensitive to thiamine deficiency than glycolysis. After 30 days of feeding, utilization of FA in rats was depressed to the 61% of initial value. Thiamine deficiency suppressed insulin secretion, and the changes were statistically significant. Feeding of rats with thiamine restricted diet for 1 month caused the reduction of serum insulin by 14%. In the same animals, trans-membrane glucose transport was reduced over two-times, what might suggest a decreased efficiency of insulin action in such conditions. The kind and concentration of non-digestible fructo-oligosaccharides (FOS) did not affect significantly serum insulin concentration in animals fed thiamine restricted diet. Substitution of a part of wheat starch with FOS has only insignificant compensatory effect on the uptake of glucose. A partial amelioration of the β-oxidation inhibition caused by feeding rats with thiamine deficient diet was observed in animals supplemented with FOS. However, this effect was statistically significant only in rats receiving diet containing 10% of inulin. The effect of supplemented FOS and their concentration on trans-membrane glucose transport in RBC was statistically significant, when pulled supplementation groups were used for statistical evaluation.
Keywords:thiamine deficiency  oligofructans  glucose uptake  β‐oxidation  rats
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号