首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle
Authors:Feng Liang  Campbell Ernest B  Hsiung Yichun  MacKinnon Roderick
Institution:Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
Abstract:CLC proteins transport chloride (Cl(-)) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl(-) ion channels, whereas others are secondary active transporters that exchange Cl(-) ions and protons (H(+)) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl(-)/H(+) exchange and a simple mechanistic connection between CLC channels and transporters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号