首页 | 本学科首页   官方微博 | 高级检索  
     


Fire models and methods to map fuel types: The role of remote sensing
Authors:Lara A. Arroyo,Cristina PascualJosé   A. Manzanera
Affiliation:Technical University of Madrid (UPM), E.T.S.I. Montes (Universidad Politécnica de Madrid), Ciudad Universitaria s.n., 28040 Madrid, Spain
Abstract:Understanding fire is essential to improving forest management strategies. More specifically, an accurate knowledge of the spatial distribution of fuels is critical when analyzing, modelling and predicting fire behaviour. First, we review the main concepts and terminology associated with forest fuels and a number of fuel type classifications. Second, we summarize the main techniques employed to map fuel types starting with the most traditional approaches, such as field work, aerial photo interpretation or ecological modelling. We pay special attention to more contemporary techniques, which involve the use of remote sensing systems. In general, remote sensing systems are low-priced, can be regularly updated and are less time-consuming than traditional methods, but they are still facing important limitations. Recent work has shown that the integration of different sources of information and methods in a complementary way helps to overcome most of these limitations. Further research is encouraged to develop novel and enhanced remote sensing techniques.
Keywords:ALS, airborne laser scanner   ASTER, advanced spaceborne thermal emission and reflection radiometer   AVIRIS, airborne visible/infrared imaging spectrometer   BEHAVE, fire behavior prediction and fuel modelling system   CFFDRS, Canadian forest fire danger rating system   DAIS, digital airborne imaging spectrometer   DCM, digital canopy model   DSM, digital surface model   DTM, digital terrain model   ERS, European remote sensing satellite   FARSITE, FARSITE fire area simulator   FBP, fire behaviour prediction   FCCS, fuel characteristics classification system   FWI, fire weather index   GIS, geographical information systems   JERS, Japanese earth resources satellite   LiDAR, Light Detection and Ranging   MESMA, multiple endmember spectral mixture analysis   MIVIS, multispectral infrared visible imaging spectrometer   MSS, multispectral scanner   NDVI, normalised difference vegetation index   NFDRS, national fire danger rating system   NFFL, Northern Forest Fire Laboratory   NFMAS, national fire management analysis system   NOAA-AVHRR, national oceanographic and atmospheric administration-advanced very high resolution radiometer   NPV, non-photosynthetic vegetation   PV, photosynthetic vegetation   PVT, potential vegetation type   SAR, synthetic aperture radar   SIR, shuttle imaging radar   SMA, spectral mixture analysis   SPOT, Systeme Pour l&rsquo  Observation de la Terre   SS, structural stage   TM, tematic mapper   VHR, very high resolution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号