首页 | 本学科首页   官方微博 | 高级检索  
     


Protective effect of progesterone on PC12 cells injured by oxygen-glucose deprivation
Authors:HOU Zhi-hui  WANG Guo-hong  WU Chun-ping  LI Dong-liang
Affiliation:Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China
Abstract:AIM: To investigate the effects of progesterone on the cell viability and expression of glucose transporter type 3(GLUT3) in PC12 cells injured by oxygen-glucose deprivation (OGD) in attempt to prove the neuroprotection of progesterone (PROG) against the hypoxic-ischemic injury in cultured cells in vitro. METHODS: Well-differentiated PC12 cells induced by nerve growth factor were randomly divided into 3 groups. In normal group, the cells were cultured without OGD treatment. In OGD group, the culture medium was replaced by glucose-free medium and the cells were transferred to a humidified incubation chamber flushed by a gas mixture of 95% N2 and 5% CO2 for 30 min. After that, the cells were fed with glucose-supplemented medium and cultured under normoxic condition for 24 h. In PROG+OGD group, the cells were given the same treatments as those in OGD group except that the medium contained progesterone at concentration of 10 nmol/L. Cellular morphological changes were observed after OGD for 30 min. The cell viability was assessed by WST-8 assay. The degree of the cell damage was evaluated by determining lactate dehydrogenase (LDH) leakage. The expression of GLUT3 at mRNA and protein levels was examined by RT-PCR and Western blotting, respectively. RESULTS: Progesterone attenuated the cellular swelling, decreased the leakage of LDH and improved the viability of PC12 cells injured by OGD (P<0.01). The expression of GLUT3 at mRNA and protein levels in PC12 cells in PROG+OGD group was significantly higher than that in OGD group (P<0.05). CONCLUSION: Progesterone has protective effect on in vitro cultured PC12 cells injured by OGD. The mechanism may be related to the up-regulation of GLUT3 protein.
Keywords:Progesterone  PC12 cells  Neurons  Oxygen-glucose deprivation  Glucose transport proteins  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号