首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidative cleavage of a carboxyester bond as a mechanism of resistance to malaoxon in houseflies
Authors:W. Welling  A.W. de Vries  S. Voerman
Affiliation:Laboratory for Research on Insecticides, Wageningen, The Netherlands
Abstract:The synergistic effect of triphenyl phosphate (a carboxyesterase inhibitor), sesamex (inhibitor of microsomal oxidation) and O,O-diethyl O-phenyl phosphorothioate on the toxicity of malathion and malaoxon for one susceptible and two resistant strains of housefly was studies. It was found that in the resistant strain G (characterized by high carboxyesterase activity) both malathion and malaoxon were synergized by triphenyl phosphate, but only malaoxon (and not malathion) by sesamex. The other resistant strain E 1, moderately tolerant for malathion but highly resistant to malaoxon, differed from strain G in that triphenyl phosphate had no effect; its response to sesamex was similar to that of strain G. The third synergist, O,O-diethyl O-phenyl phosphorothioate, combined the properties of triphenyl phosphate and sesamex. It was found to be the best of the three compounds used.Biochemical in vitro studies showed that both resistant strains could degrade malaoxon oxidatively at a rate at least 10 × higher than that of the susceptible strain. This oxidation could be inhibited by very low concentrations of the thiono analogue; a malaoxon to malathion ratio of 10:1 gave an inhibition of about 70% at a malaoxon concentration of 5 × 10?6M. The product of this oxidation is malaoxon β-monocarboxylic acid. This metabolite was also found 1 hr after application of malaoxon in vivo.The results mentioned in this paper indicate that houseflies may become resistant to malaoxon by an increased rate of oxidative carboxyester bond cleavage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号