首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bimodal effect of methylenedioxyphenyl compounds on detoxifying enzymes in the housefly
Authors:SJ Yu  LC Terriere
Institution:Department of Entomology, Oregon State University, Corvallis, Oregon 97331 USA
Abstract:Thirteen methylenedioxyphenyl (MDP) compounds, including commercial insecticide synergists and juvenile hormone analogs, were compared in their effect on detoxifying enzymes in the housefly (Musca domestica). Flies were fed a diet containing 1% of the compounds for 3 days. Enzymes were then assayed in vitro for their activity using aldrin and DDT as substrates. Piperonyl butoxide (PB), sesamex, propyl isome, sulfoxide, safrole, isosafrole, 6,7-epoxy-3,7-diethyl-1-3-4(methylenedioxy) phenoxy]-2-octene (MDP-JH I) and 6,7-epoxy-3-methyl-7-ethyl-1-3,4-(methylenedioxy) phenoxy]-2-octene (MDP-JH II) all caused a bimodal effect, inhibiting microsomal epoxidase and inducing DDT-dehydrochlorinase in the resistant Isolan-B strain. Two of these, PB and MDP-JH I, gave similar results with the susceptible strain, stw;w5 and two resistant strains, Fc-B and Orlando-DDT. However, o-safrole, piperonylic acid, piperonal, 3,4-methylenedioxybenzyl acetate and methyl-(3,4-methylenedioxy) benzoate had little or no effect on the enzyme systems studied. The standard susceptible strain (WHO-SRS) responded to these compounds very differently. Among those tested, piperonyl butoxide, sesamex, safrole, and isosafrole were inducers of microsomal epoxidase, a 4-fold increase occurring after treatment with sesamex. Only MDP-JH II showed a marked inhibition of the epoxidase. These treatments did not effect DDT-dehydrochlorinase activity in this strain.The enhancement of DDT-dehydrochlorinase activity by the MDP compounds is associated with an increased rate of DDT dehydrochlorination in vivo. The stimulatory effect could be blocked by treatment with actinomycin D or cycloheximide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号