首页 | 本学科首页   官方微博 | 高级检索  
     


Human acylation-stimulating protein and lipid biosynthesis in bovine adipose tissue explants
Authors:Jacobi S K  Miner J L
Affiliation:Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA.
Abstract:Human acylation-stimulating protein (hASP) up-regulates triacylglycerol synthesis in human adipocytes. The objectives of this research were 1) to determine the effect of hASP on triacylglycerol synthesis in bovine adipose explants and 2) to determine whether nutritional status influences the sensitivity of adipose tissue to hASP. Fresh s.c. adipose tissue was sectioned into 20- to 30-mg explants and incubated for 1 to 6 h in M199 media containing 3% BSA and either 0.75 mM [1-14C]palmitate, 0.75 mM [9, 10-3H]oleate, or 2.5 mM [1-14C] acetate, as well as hASP and(or) insulin. The explants were extracted, and lipid fractions were separated by TLC and quantified by liquid scintillation. Acetate incorporation into lipids increased 15 to 30%, and palmitate or oleate incorporation increased 10 to 25%, when explants were exposed to hASP, although this response was not significant in every experiment. Insulin increased triacylglycerol synthesis in some experiments, but not in others. Our interpretation is that acylation-stimulating protein (ASP) can mildly enhance triacylglycerol synthesis in bovine adipose tissue. To fulfill the second objective, nine 9-mo-old steers were housed individually for two periods of 3 wk each. During the first period, four of the nine steers were fed to 50% of NEm requirement and the other five consumed the same diet ad libitum. After the first period, all steers consumed feed ad libitum for 2 wk and were assigned the opposite ration for the second period. Steers gained 40.5 kg BW when allowed ad libitum access to feed but lost 30.2 kg BW when feed intake was restricted (SE = 7.84; P < 0.01). At the end of each period, s.c. adipose tissue was sectioned into explants and incubated as described above. Four explants per steer per period were used to test effects of insulin (0 and 1 nM) and hASP (0, 0.01, 0.1, and 1 microM). Insulin did not influence incorporation of acetate or oleate. Acetate incorporation (P < 0.32) was 0.99, 1.03, 1.04, and 1.10 nmol x mg(-1) h(-1) (SE = 0.13) and oleate incorporation (P < 0.01) was 0.347, 0.357, 0.353, and 0.420 nmol x mg(-1)h(-1) (SE = 0.022) for 0, 0.01, 0.1, and 1 microM hASP, respectively. Feed restriction reduced (P < 0.01) acetate and oleate incorporation by 95 and 40%, respectively. No interactions among feed intake, insulin, and hASP were detected. In conclusion, the effect of hASP on fatty acid esterification is not influenced by feed restriction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号