首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The relative affinities of Cd,Ni and Zn for different soil clay fractions and goethite
Authors:Kevin G Tiller  J Gerth  G Brümmer
Institution:Institut für Pflanzenernährung und Bodenkunde, Universität Kiel B.R.D.
Abstract:Cadmium, Ni and Zn ions in aqueous solution were allowed to react with clay fractions (< 2 μm) separated from soils with a wide range of mineralogical composition and properties. Sorbed metals were separated into two components, termed specifically and non-specifically bound, by a controlled washing procedure using 10?2M Ca(NO3)2.Sorption reactions were characterized by Δ pH50 values, by shapes of adsorption curves, and by measuring separation factors and distribution coefficients under prescribed conditions. Three reaction types were identified, viz., (i) those associated with soil adsorbing surfaces dominated by iron oxides; these appear to be controlled by mechanisms which involve metal-ion hydrolysis and result accordingly in relative sorption affinities of Zn > Ni > Cd; (ii) those associated with organic surfaces for which metal-ion hydrolysis was of little significance and little difference in metal-ion affinity was evident; at lower pH-values, Cd and Ni were somewhat preferred over Zn, with the converse at higher pH-values; (iii) those associated with 2:1 layer lattice silicates which exhibit greater preference for Zn, i.e., Zn >> Ni, Cd and higher affinities for each metal at lower pH-values (< 5) than is shown by clays dominated by iron oxides. There was also evidence of greater relative affinity for Ni shown by clay fractions dominated by fine kaolinites when compared with other clays.This investigation has shown that a range of sorption processes are involved in reactions of heavy metals with soils. We caution against undue emphasis on any particular sorption process in developing theoretical sorption models as a basis of understanding and solving problems connected with pollution and plant nutrition; we also stress the need for studies with colloids separated from soils in conjunction with those using synthetic adsorbents as models for soil constituents.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号