首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physiologic response of six plant species grown in two contrasting soils and irrigated with brackish groundwater and RO concentrate
Authors:Alison M Flores  Brian J Schutte  Geno Picchioni  David Daniel
Institution:1. Plant and Environmental Sciences Department, New Mexico State University, Las Cruces, New Mexico, USA;2. Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, New Mexico, USA;3. Economics, Applied Statistics and International Business Department, New Mexico State University, Las Cruces, New Mexico, USA
Abstract:With declining availability of fresh surface water, brackish groundwater is increasingly used for irrigation in the arid and semi-arid southwestern United States. Brackish water can be desalinated by reverse osmosis (RO) but RO results in a highly saline concentrate. Disposal of concentrate is a major problem hindering augmentation of inland desalination in arid areas. The objective of this study was to determine the effect of texture and saline water irrigation on the physiology of six species (Atriplex canescens (Pursh) Nutt., Hordeum vulgare L., Lepidium alyssoides A. Gray, Distichlis stricta (L.) Greene, Panicum virgatum L., and ×Triticosecale Wittm. ex A. Camus Secale?×?Triticum]). All species were grown in two contrasting soils and irrigated with the same volume of control water (EC 0.9?dS/m), brackish groundwater (4.1?dS/m), RO concentrate (EC 8.0?dS/m). Several plant physiological measurements were made during the growing season including height, number of stem nodes, average internodal length, number of leaves, leaf length, photosynthetic rates, stomatal conductance rates, transpiration rates, leaf temperatures, stem water potential, and osmotic potential. P. virgatum was the only species that showed significant decrease in plant height and growth with texture and irrigation water salinity. Except for A. canescens and L. alyssoides, number and length of leaves decreased with increasing salinity for all species. No significant differences were observed for photosynthetic, stomatal conductance, and transpiration rates by soil texture or irrigation water salinity. Stem water potential and osmotic potential did show some significant influence by soil texture and irrigation water salinity. Based on the results, RO concentrate can be reused to grow all six species in sand; however, growth of all species showed some limitations in clay. Local reuse of RO concentrate along desert margins with regular soil and environmental quality monitoring can accelerate implementation of inland desalination for sustaining food security.
Keywords:Brackish water  halophytes  osmotic potential  photosynthetic rates  RO concentrate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号