首页 | 本学科首页   官方微博 | 高级检索  
     检索      

全玻璃真空管太阳能阵列供暖系统性能试验
引用本文:李金平,孔莹,许哲,司泽田.全玻璃真空管太阳能阵列供暖系统性能试验[J].农业工程学报,2017,33(11):240-247.
作者姓名:李金平  孔莹  许哲  司泽田
作者单位:1. 兰州理工大学西部能源与环境研究中心,兰州,730050;2. 西北低碳城镇支撑技术协同创新中心,兰州,730050;3. 甘肃省生物质能与太阳能互补供能系统重点试验室,兰州,730050
基金项目:国家自然科学基金(51676094);甘肃省国际科技合作专项(1604WKCA009)
摘    要:为了研究实际工况下全玻璃真空管太阳能集热器系统的动态供暖性能,通过试验研究和理论分析得出了储热水箱总热损系数、太阳能集热器阵列集热效率的回归方程以及系统太阳能利用率的计算公式,结果表明:2015年11月24日至2015年12月5日,储热水箱总热损系数为25.82~31.53 W/℃,全玻璃真空管太阳能集热器阵列的集热效率为38%~72%。以2015年11月30日为例,系统的太阳能利用率为37.1%,太阳能集热器所收集的热量仅有54.6%被利用,系统热损过大。通过对比系统供热量和建筑逐时耗热量发现:在供暖期间,系统所提供的热量远大于该段时间的建筑耗热量,特别是在供暖初期,供热量达到了该时段建筑耗热量的10倍以上,供热量和供暖时间过于集中;针对此问题提出了单户太阳能供暖系统运行策略的改进建议。

关 键 词:太阳能  热损  建筑  全玻璃真空管太阳能集热器供暖系统  低温地板辐射采暖
收稿时间:2016/11/1 0:00:00
修稿时间:2017/5/10 0:00:00

Experiment on performance of all-glass vacuum tube solar array heating system
Li Jinping,Kong Ying,Xu Zhe and Si Zetian.Experiment on performance of all-glass vacuum tube solar array heating system[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(11):240-247.
Authors:Li Jinping  Kong Ying  Xu Zhe and Si Zetian
Abstract:As a kind of conversion device of solar energy, the solar collector is the most important part of the solar heating system. Among various solar collectors, all-glass vacuum tube solar collector is regarded as more favourable than other collectors in both technical and economic perspectives, so domestic and foreign experts have studied several aspects of it. But the current studies usually focus on the heating performance of the solar system during the whole heating season and the influence factors of the collecting efficiency of the all-glass vacuum tube solar collector, and there is barely research on the hourly and dynamic heating performance of solar heating system in a monomer building under different operating ways. With the purpose of studying the above problems, an all-glass tube solar heating system is fabricated on a monomer building, combined with a low-temperature floor radiation heating. The system is composed of 6 groups of standpipe all-glass vacuum tube solar collectors which have uniform structure parameters, a low-temperature floor radiation heating device, a circulating pump, a valve, a conductor and other accessories. Every group of solar collector comprises 40 all-glass vacuum tubes with the external diameter of 58 mm and the length of 1800 mm, and a storage tank with the volume of 400 L, which is installed on a rack with an angle of 45° facing south. The contour aperture area of solar collector is about 3.85 m2, so the total contour aperture area of the array is about 23.1 m2. The monomer building locates in Minqin County, Gansu Province, China. Its building area is 117 m2 and actual heating area is 87 m2. The operation mode of system is as follows: Daily 17:30-23:00 is set to be heating time; during this period, the controller controls the water pump to circulate hot water at a constant flow rate, stop for 5 min every operating for 8 min. In the experiment, the values of various parameters, such as the solar irradiance, the inlet and outlet temperatures of collector array, the tank water temperature, the ambient temperature, the circulating water flow rate and the wind speed, are measured by different sensors. All measured variables are collected and recorded automatically by Agilent 34970A data acquisition instrument every 10 s. The testing period was from November 24th to December 5th, 2015. Then, many important parameters such as the total heat loss coefficient of storage tank, the collection efficiency of solar collector array, the solar energy utilization and the solar heating fraction of the system, and hourly variation of building heat load are theoretically and experimentally investigated. Furthermore, in the actual operation state, the heating effect of the solar heating system is analyzed, and the improvement proposals of operating strategy are provided. The results show that the total heat loss coefficient of storage tank in this system is 25.82-31.53 W/℃, the collection efficiency of solar collector array is 38%-72%, and the solar energy utilization and the solar heating fraction of the system are 37.1% and 48.3%, respectively; only 54.6% of heat collected by the solar collector is used, the remaining heat is emitted to the environment, and thus the heat loss of system accounts for a large proportion of the total collected heat; under the actual operating state, the heat supply is much more than the heat consumption of building, and especially in the initial period of heating, heat supply reaches more than 10 times that consumed by building, and heat supply and heating time are excessively concentrated. As a consequence, improvement proposals of operating strategy are provided for the solar heating system of the monomer building to reduce the water flux of heating system and advance the heating time.
Keywords:solar energy  heat losses  buildings  monomer building  all-glass vacuum tube solar heating system  low-temperature floor radiation heating
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号