首页 | 本学科首页   官方微博 | 高级检索  
     

利用度量误差模型和分段建模方法建立云南云杉相容性立木材积和地上生物量模型
引用本文:梁文业,贺鹏,肖前辉. 利用度量误差模型和分段建模方法建立云南云杉相容性立木材积和地上生物量模型[J]. 中南林业调查规划, 2014, 0(1): 8-12
作者姓名:梁文业  贺鹏  肖前辉
作者单位:[1]西藏林业调查规划研究院,拉萨850000 [2]国家林业局中南林业调查规划设计院,长沙410014
摘    要:以云南云杉实测立木材积和地上生物量数据为例,利用度量误差模型方法和分段建模方法建立相容性的一元和二元立木材积和地上生物量模型。结果表明,无论常规模型还是分段模型二元立木材积模型的相关统计指标得到了大幅度的改进,而二元地上生物量模型的相关指标与一元模型相比差异不大;常规二元立木材积模型在小径阶下存在明显的偏差,分段模型从整体上能够有效地解决系统偏差问题;所建的分段一元立木材积模型和地上生物量模型的平均预估精度分别到了90%和95%,同时分段二元立木材积模型和地上生物量模型的平均预估精度均到了97%。

关 键 词:立木材积  地上生物量  度量误差模型  分段建模

Using Measurement Error Modeling Method and Segmented Modeling Method to Establish Compatible Single-Tree Biomass Model System for Spruce in Yunnan
LIANG Wenye,HE Peng,XIAO Qianhui. Using Measurement Error Modeling Method and Segmented Modeling Method to Establish Compatible Single-Tree Biomass Model System for Spruce in Yunnan[J]. Central South Forest Inventory and Planning, 2014, 0(1): 8-12
Authors:LIANG Wenye  HE Peng  XIAO Qianhui
Affiliation:1. Forest Inventory and Planning Institute of Tibet Autonomous Region, Lhasa 850000 ,Tibet, China; 2. Central South Forest Inventory and Planning Institute of State Forestry Administration, Changsha 410014, Hunan, China)
Abstract:Based on the tree volume and above-ground biomass data of spruce in Yunnan , compatible single- tree biomass model systems of one-variable and two-variables were constructed respectively by using the error- in-variable simultaneous equations and segmented modeling method in this paper. The results showed that : 1 ) The regressions of volume equations improved significantly when tree height was used together with diameter at breast height (DBH) for both conventional model and segmented model, while the regressions of biomass equa- tions improved slightly; 2) There were obvious system bias at small diameter classes in conventional two-varia- ble model, the segmented model could effectively resolve this problem; 3 ) The prediction precision of volume and above-ground biomass segmented one-variable model were more than 90% and 95% respectively, the pre- diction precisions of volume and above-ground biomass segmented two-variable model were more than 97%.
Keywords:volume  above-ground biomass  error-variable-model  segmented modeling
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号