首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Phosphorus Additions and Arbuscular Mycorrhizal Fungal Inoculation on the Growth,Physiology, and Phosphorus Uptake of Wheat Under Two Water Regimes
Authors:Beibei Zhang  Hui Zhang  He Wang  Peng Wang  Yuexuan Wu  Miaomiao Wang
Institution:Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, Baoji University of Arts and Sciences, Baoji, China
Abstract:Drought stress greatly affected the growth and development of wheat in the world, while wheat growth could benefit through improvement of water status and nutrient uptake by mycorrhizal symbiosis or addition of phosphorus (P). Experimental treatments were (a) phosphorus addition (0 and 90 kg/ha), (b) soil water condition (40% field capacity and 95% field capacity), and (c) arbuscular mycorrhizal fungi (AMF, Glomus intraradices) (noninoculation and inoculation) which were conducted in a growth chamber. The results showed that addition of phosphorus and AMF inoculation significantly increased the relative water content and specific leaf area of flag leaves especially under 40% field capacity (water deficit (WD)). The leaf gas exchange parameters were all decreased under WD. The water use efficiency (WUE) and instantaneous WUE (WUEi) was enhanced by WD, AMF inoculation, and phosphorus addition. AMF inoculation and WD significantly decreased the carbon isotope discrimination (CID) of leaf. The P concentrations in stem, grain, and leaf were significantly increased by phosphorus addition, WD, and AMF inoculation. Significant correlations were found between WUE and grain P, stem P, and leaf P concentrations. Leaf CID was significantly negatively correlated with WUE and stem P concentrations. Inoculation of AMF or phosphorus addition could improve the growth, physiology, and phosphorus uptake in spring wheat under drought conditions.
Keywords:Carbon isotope discrimination  mycorrhizae  phosphorus  water use efficiency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号