首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of concentration and source of sulfate on nursery pig performance and health.
Authors:M F Veenhuizen  G C Shurson  E M Kohler
Affiliation:Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus 43210.
Abstract:The effect of sulfate in drinking water at concentrations of 600, 1,200, and 1,800 mg/L on nursery pig performance and health was evaluated over 28 days on 415 weaned pigs. Sodium sulfate and magnesium sulfate were evaluated in combination at concentrations of 600, 1,200, and 1,800 mg/L, and independently at concentrations of 600 and 1,800 mg/L in the drinking water. Seven treatment groups and 1 control group were evaluated for mean gain, feed consumption, water consumption, feed conversion, prevalence of diarrhea, and evidence of common post-weaning enteric pathogens. Statistical analysis was performed, using analysis of variance with repeated measures including initial pig weight as a covariate. Prevalence of diarrhea was analyzed nonparametrically with a repeated measures design. Results indicated that pigs drinking 600, 1,200, or 1,800 mg of sulfate/L water had increased prevalence of nonpathogenic diarrhea during the trial period. There was a trend for increased water consumption corresponding to increased sulfate in the water. Differences in mean daily gain, feed consumption, or feed-to-gain ratios were not observed. Forty-five pigs were treated at least once during the trial and 4 pigs died, resulting in a nursery morbidity of 11% and mortality of 0.96%. Fourteen isolates of enterotoxigenic Escherichia coli were found and rotavirus was isolated from 1 pig. Pigs in this study were not exposed to transmissible gastroenteritis virus. Except for an increase in fecal moisture content (not associated with pathogenic diarrhea), concentrations of up to 1,800 mg of sodium, magnesium, or a combination of sodium and magnesium sulfate/L had no adverse effect on nursery pig performance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号