首页 | 本学科首页   官方微博 | 高级检索  
     


Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species
Authors:Mitchell   Bolstad   Vose
Affiliation:Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue N., St. Paul, MN 55108, USA.
Abstract:We measured variations in leaf dark respiration rate (Rd) and leaf nitrogen (N) across species, canopy light environment, and elevation for 18 co-occurring deciduous hardwood species in the southern Appalachian mountains of western North Carolina. Our overall objective was to estimate leaf respiration rates under typical conditions and to determine how they varied within and among species. Mean dark respiration rate at 20 degrees C (Rd,mass, micromol CO2 per kg leaf dry mass per s) for all 18 species was 7.31 micromol per kg per s. Mean Rd,mass of individual species varied from 5.17 micromol per kg per s for Quercus coccinea Muenchh. to 8.25 micromol per kg per s for Liriodendron tulipifera L. Dark respiration rate varied by leaf canopy position and was higher in leaves collected from high-light environments. When expressed on an area basis, dark respiration rate (Rd,area, micromol CO2 per kg leaf dry area per s) showed a strong linear relationship with the predictor variables leaf nitrogen (Narea, g N per square m leaf area) and leaf structure (LMA, g leaf dry mass per square m leaf area) (r squared = 0.62). This covariance was largely a result of changes in leaf structure with canopy position; smaller thicker leaves occur at upper canopy positions in high-light environments. Mass-based expression of leaf nitrogen and dark respiration rate showed that nitrogen concentration (Nmass, mg N per g leaf dry mass) was only moderately predictive of variation in Rd,mass for all leaves pooled (r squared = 0.11), within species, or among species. We found distinct elevational trends, with both Rd,mass and Nmass higher in trees originating from high-elevation, cooler growth environments. Consideration of interspecies differences, vertical gradients in canopy light environment, and elevation, may improve our ability to scale leaf respiration to the canopy in forest process models.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号