Resistance of Cercospora beticola Sacc isolates to thiophanate methyl (benzimidazole), demethylation inhibitors and quinone outside inhibitors in Morocco |
| |
Authors: | Z. El Housni S. Ezrari A. Tahiri A. Ouijja |
| |
Affiliation: | 1. Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, BPS 40, Meknès, Morocco;2. Meknes Faculty of Sciences, Laboratory of Biotechnology and Molecular Biology, Department of Biology, Moulay Ismail University, PO Box 11201, Zitoune, Meknès, Morocco |
| |
Abstract: | Sugar beet is a major crop in Morocco and Cercospora leaf spot is one of its most important fungal diseases. In Morocco, thiophanate methyl (benzimidazole) and difenoconazole (demethylation inhibitor, DMI) have been used extensively in the management of Cercospora leaf spot. In this study, samples of Cercospora beticola Sacc were collected from four major production areas. The identification of all isolates was confirmed using a PCR test with specific primers. Radial mycelia growth of each isolate in unmodified potato dextrose agar medium was compared to mycelia growth in the same medium modified with thiophanate methyl (1, 5, 10 and 50 ppm) or the DMIs difenoconazole, epoxiconazole and tetraconazole (0.1, 0.5, 1, 5, 10 and 50 ppm) or the quinone outside inhibitors (QOIs) azoxystrobin and trifloxystrobin (1, 5, 10 and 50 ppm). The percentage of inhibition obtained was used for the half maximal effective concentration (EC50) calculation. All the isolates showed resistance to the thiophanate methyl molecule to different degrees. Three groups were identified: low resistance with EC50 less than 100 ppm, moderate resistance with EC50 between 100 and 1000 ppm, and very resistant with EC50 more than 1000 ppm. For difenoconazole, 41% of isolates were sensitive (EC50 < 0.05 ppm) and 59% were resistant, while for tetraconazole and epoxiconazole 6% were sensitive (EC50 < 0.01 ppm), 66.7 % had medium resistance (0.01 < EC50 < 1 ppm) and 27.3% were resistant (EC50 > 1 ppm). For QOIs, azoxystrobin was less effective for mycelial inhibition than trifloxystrobin, with 54.5% of isolates with resistance to azoxystrobin (EC50 > 100 ppm). |
| |
Keywords: | |
|
|