首页 | 本学科首页   官方微博 | 高级检索  
     


Regional distribution of wheat yield and chemical fertilizer requirements in China
Authors:XU Xin-peng  HE Ping  CHUAN Li-min  LIU Xiao-yan  LIU Ying-xia  ZHANG Jia-jia  HUANG Xiao-meng  QIU Shao-jun  ZHAO Shi-cheng  ZHOU Wei
Affiliation:1 Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China2 Institute of Information on Science and Technology of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R.China3 Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, P.R.China
Abstract:Quantification of currently attainable yield and fertilizer requirements can provide detailed information for assessing the food supply capacity and offer data support for agricultural decision-making. Datasets from a total of 5 408 field experiments were collected from 2000 to 2015 across the major wheat production regions in China to analyze the spatial distribution of wheat yield, the soil nutrient supply capacity(represented by relative yield, defined as the ratio of the yield under the omission of one of nitrogen(N), phosphorus(P) and potassium(K) to the yield under the full NPK fertilizer application), and N, P and K fertilizer requirements by combining the kriging interpolation method with the Nutrient Expert Decision Support System for Wheat. The results indicated that the average attainable yield was 6.4 t ha~(-1), with a coefficient of variation(CV) of 24.9% across all sites. The yields in North-central China(NCC) and the northern part of the Middle and Lower reaches of the Yangtze River(MLYR) were generally higher than 7 t ha~(-1), whereas the yields in Southwest China(SWC), Northeast China(NEC), and the eastern part of Northwest China(NWC) were usually less than 6 t ha~(-1). The precentage of area having a relative yield above 0.70, 0.85, and 0.85 for N, P, and K fertilizers accounted for 52.3, 74.7, and 95.9%, respectively. Variation existed in N, P, and K fertilizer requirements, with a CV of 24.8, 23.9, and 29.9%, respectively, across all sites. More fertilizer was needed in NCC and the northern part of the MLYR than in other regions. The average fertilizer requirement was 162, 72, and 57 kg ha~(-1) for N, P_2O_5, and K_2O fertilizers, respectively, across all sites. The incorporation of the spatial variation of attainable yield and fertilizer requirements into wheat production practices would benefit sustainable wheat production and environmental safety.
Keywords:wheat  attainable yield  fertilizer requirements  nutrient expert system  spatial variation
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《农业科学学报》浏览原始摘要信息
点击此处可从《农业科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号