首页 | 本学科首页   官方微博 | 高级检索  
     


Reduced tillage with residue retention improves soil labile carbon pools and carbon lability and management indices in a seven-year trial with wheat-mung bean-rice rotation
Authors:Rafeza BEGUM  Mohammad M. R. JAHANGIR  Mohammad JAHIRUDDIN  Mohammad Rafiqul ISLAM  Shaikh M. BOKHTIAR  Khandakar R. ISLAM
Affiliation:1 Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202(Bangladesh)2 Soil Resource Development Institute, Dhaka 1215(Bangladesh)3 South Asian Association for Regional Cooperation(SAARC) Agriculture Center, Dhaka 1215(Bangladesh)4 The Ohio State University, Columbus OH 43235(USA)
Abstract:Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon (C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitative) with respect to lability and stratification under an annual wheat-mung bean-rice cropping sequence. Composite soil samples were collected at 0-15 and 15-30 cm depths from a three-replicate split-plot experiment with tillage treatment as the main plots and crop residue levels as the sub-plots. The tillage treatments included conventional tillage (CT) and strip tillage (ST). Residue levels were high residue level (HR), 30% of the plant height, and low residue level (LR), 15%. In addition to TOC, soil samples were analyzed for particulate organic C (POC), permanganate oxidizable C (POXC), basal respiration (BR), specific maintenance respiration rate (qCO2), microbial biomass C (MBC), potentially mineralizable C (PMC), and TOC lability and management indices. The ST treatment significantly increased the TOC and labile C pools at both depths compared with the CT treatment, with the effect being more pronounced in the surface layer. The HR treatment increased TOC and labile C pools compared with the LR treatment. The ST + HR treatment showed significant increases in MBC, metabolic quotient (qR), C pool index (CPI), C lability index (CLI), and C management index (CMI), indicating improved and efficient soil biological activities in such systems compared with the CT treatment. Similarly, the stratification values, a measure of soil quality improvement, for POC and MBC were > 2, indicating improved soil quality in the ST + HR treatment compared with the CT treatment. The ST + HR treatment not only significantly increased the contents of TOC pools, but also their stocks. The CMI was correlated with qCO2, BR, and MBC, suggesting that these are sensitive indicators of early changes in TOC. The qCO2 was significantly higher in the CT + LR treatment and negatively correlated with MBC and CMI, indicating a biologically stressed soil condition in this treatment. Our findings highlight that medium-term reduced tillage with HR management has profound consequences on soil TOC quality and dynamics as mediated by alterations in labile C pools.
Keywords:basal respiration  carbon management index  carbon stratification  particulate organic carbon  permanganate oxidizable carbon  total organic carbon
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《土壤圈》浏览原始摘要信息
点击此处可从《土壤圈》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号