首页 | 本学科首页   官方微博 | 高级检索  
     


Familial Congenital Methemoglobinemia in Pomeranian Dogs Caused by a Missense Variant in the NADH‐Cytochrome B5 Reductase Gene
Authors:H. Shino  Y. Otsuka‐Yamasaki  T. Sato  K. Ooi  O. Inanami  R. Sato  M. Yamasaki
Affiliation:1. Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan;2. Estie Animal Hospital, Kooriyama, Fukushima, Japan;3. Ooi Animal Hospital, Kooriyama, Fukushima, Japan;4. Department of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
Abstract:

Background

In veterinary medicine, congenital methemoglobinemia associated with nicotinamide adenine dinucleotide (NADH)‐cytochrome b5 reductase (b5R) deficiency is rare. It has been reported in several breeds of dogs, but little information is available about its etiology.

Objectives

To analyze the NADH‐cytochrome b5 reductase gene, CYB5R3, in a Pomeranian dog family with methemoglobinemia suspected to be caused by congenital b5R deficiency.

Animals

Three Pomeranian dogs from a family with methemoglobinemia were analyzed. Five healthy beagles and 5 nonrelated Pomeranian dogs without methemoglobinemia were used as controls.

Methods

Methemoglobin concentration, b5R activity, and reduced glutathione (GSH) concentration were measured, and a turbidity index was used to evaluate Heinz body formation. The CYB5R3 genes of the affected dog and healthy dogs were analyzed by direct sequencing.

Results

Methemoglobin concentrations in erythrocytes of the affected dogs were remarkably higher than those of the control dogs. The b5R activity of the affected dogs was notably lower than that of the control dogs. DNA sequencing indicated that this Pomeranian family carried a CYB5R3 gene missense variant (ATC→CTC at codon 194) that resulted in the replacement of isoleucine (Ile) by leucine (Leu).

Conclusions and Clinical Importance

This dog family had familial congenital methemoglobinemia caused by b5R deficiency, which resulted from a nonsynonymous variant in the CYB5R3 gene. This variation (c.580A>C) led to an amino acid substitution (p.Ile194Leu), and Ile194 was located in the proximal region of the NADH‐binding motif. Our data suggested that this variant in the canine CYB5R3 gene would affect function of the b5R in erythrocytes.
Keywords:CYB5R3 gene  Familial methemoglobinemia  Missense variant  NADH‐cytochrome b5 reductase deficiency  Nonsynonymous SNP
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号