首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于广泛靶向代谢组学的葡萄种子代谢物鉴定与比较分析
引用本文:生弘杰,卢素文,郑暄昂,贾海锋,房经贵.基于广泛靶向代谢组学的葡萄种子代谢物鉴定与比较分析[J].中国农业科学,2023,56(7):1359-1376.
作者姓名:生弘杰  卢素文  郑暄昂  贾海锋  房经贵
作者单位:1. 江苏省农业科学院农产品质量安全与营养研究所;2. 南京农业大学园艺学院
基金项目:国家自然科学基金(31901991); 国家自然科学基金(3023)
摘    要:【目的】葡萄种子因富含多种代谢产物而具有较高生物活性。全面鉴定葡萄种子中代谢物组分,比较分析不同品种间代谢物差异,探讨葡萄种子代谢物与果皮颜色和品种起源之间的关系,为深入开发和利用葡萄种子提供参考依据。【方法】以紫红色欧美种葡萄‘巨峰’、浅红色欧亚种葡萄‘魏可’和黄绿色欧亚种葡萄‘黄意大利’成熟期种子为材料,利用超高效液相色谱串联质谱(UPLC-MS/MS)进行广泛靶向代谢组学分析,采用多元统计学等方法鉴定和比较代谢物。【结果】代谢组学数据质量好,组内样品重复性较好,组间样品存在差异。3个葡萄品种种子中共检测到514个代谢物,包括氨基酸、脂类等6类初生代谢物和原花青素、白藜芦醇等20类次生代谢物。不同品种间代谢物种类相似,但含量差异显著。大多数代谢物的相对含量在深色品种‘巨峰’种子中较高,在浅色品种‘魏可’种子中次之,在无色品种‘黄意大利’种子中较低,表明葡萄种子代谢物含量可能与果皮颜色呈正相关。‘魏可’和‘黄意大利’种子代谢物的相对含量较为相近,而均与‘巨峰’种子代谢物的相对含量差异较大,表明葡萄种子代谢物含量可能与品种起源有关。不同葡萄品种间的差异代谢物主要涉及苯丙烷生物合成、花青...

关 键 词:葡萄  种子  代谢组学  代谢物  酚类  脂类
收稿时间:2022-05-20

Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics
SHENG HongJie,LU SuWen,ZHENG XuanAng,JIA HaiFeng,FANG JingGui.Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics[J].Scientia Agricultura Sinica,2023,56(7):1359-1376.
Authors:SHENG HongJie  LU SuWen  ZHENG XuanAng  JIA HaiFeng  FANG JingGui
Abstract:【Objective】 Grape seeds have high bioactivity because they are rich in many metabolites. The objective of this study was to comprehensively identify the metabolite components in grape seeds, to compare and to analyze the differences of metabolites among different varieties, and to explore the relationship between metabolites in grape seeds and skin color and variety origin, so as to provide a reference basis for further development and utilization of grape seeds. 【Method】 The mature seeds of purple-skinned Kyoho (V. labruscana: V. labrusca × V. vinifera, JFS), pink-skinned Wink (V. vinifera, WKS), and yellow-skinned Italia (V. vinifera, YDS) were used for widely targeted metabolomics analysis by UPLC-MS/MS. The metabolites were identified and compared by multivariate statistical methods. 【Result】 The quality of metabolomics data was good, and the data of samples within groups was repetitive and the differences in the data of samples among groups were existed. A total of 514 metabolites were identified in the seeds of three grape varieties, including 6 primary metabolites, such as amino acids and lipids, and 20 secondary metabolites, such as proanthocyanidins and resveratrol. Among different varieties, the metabolite components were similar but the metabolite contents were significantly different. The relative contents of most metabolites were high in the dark variety Kyoho, followed by the light variety Wink, but low in the colorless variety Italy, indicating that the metabolite contents in grape seeds might be positively correlated with the skin color. The relative contents of metabolites in the seeds of Wink and Italia were similar, while they were greatly different from those of Kyoho, indicating that the metabolite contents in grape seeds might be related to the variety origin. The differential metabolites among different varieties were mainly involved in phenylpropane biosynthesis, anthocyanin synthesis, lipid metabolism, etc. pathway. There were many phenolic compounds in the differential metabolites and the metabolites with the large difference were mainly flavonoids. Grape seeds were rich in phenols and lipids. In addition to monomeric flavane-3-ols and their polymers, the relative contents of other phenolic compounds such as flavones and flavonols were also high. There was no significant difference in the relative contents of resveratrol among the three varieties. The relative contents of glyceryl phosphatide such as lysophosphatidylcholine were high, while those of linolenic acid were low. There was little difference in the relative contents of lipids among different varieties. 【Conclusion】 The metabolite components in grape seeds of different varieties were similar, while the metabolite contents were related to the skin color and the variety origin. Phenols and lipids were important components of metabolites in grape seeds and could be used as good sources for food and other processing industries.
Keywords:grape (Vitis vinifera)  seed  metabolomics  metabolite  phenol  lipid  
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号