首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation
Authors:SHI Wen-xuan  ZHANG Qian  LI Lan-tao  TAN Jin-fang  XIE Ruo-han  WANG Yi-lun
Institution: 1 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, P.R.China 2 School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R.China
Abstract:Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.  Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE), the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.  Therefore, a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF, furrow fertilization by manual trenching, i.e., farmer fertilizer practice; HF: root-zone hole fertilization by point broadcast manually) at 210 kg N ha–1 (controlled-release:normal fertilizer=5:5), along with a 1-year in-situ microplot experiment.  Maize yield, NUE and N loss were investigated under different fertilization modes.  The results showed that compared with FF, HF improved the average yield and N recovery efficiency by 8.5 and 22.3% over three years, respectively.  HF had a greater potential for application than FF treatment, which led to increases in dry matter accumulation, total N uptake, SPAD value and LAI.  In addition, HF remarkably enhanced the accumulation of 15N derived from fertilizer by 17.2% compared with FF, which in turn reduced the potential loss of 15N by 43.8%.  HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.  Hence, HF could match the N requirement of summer maize, sustain yield, improve NUE and reduce environmental N loss simultaneously.  Overall, root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain, which deserves further application and investigation.
Keywords:maize yield  hole fertilization  NUE   15N-labeled blended urea  15N loss  
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《农业科学学报(英文版)》浏览原始摘要信息
点击此处可从《农业科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号