首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大田不同播种间距单株小麦根长密度动态研究
引用本文:孙启滨,王建楠,李毅念,何瑞银,丁启朔.大田不同播种间距单株小麦根长密度动态研究[J].中国农业科学,2023,56(8):1456-1470.
作者姓名:孙启滨  王建楠  李毅念  何瑞银  丁启朔
作者单位:1. 南京农业大学工学院/江苏省智能化农业装备重点实验室;2. 农业农村部南京农业机械化研究所
基金项目:国家重点研发计划“粮食丰产增效科技创新”重点专项(2016YFD0300900); 江苏省苏北科技专项(SZ-LYG2017008)
摘    要:【目的】为探明单粒精播种植方式种间距对小麦根系的土层分布影响,构建了基于根系数字化仪实测根系3D拓扑结构数据下MATLAB分割分析复合型小麦根长密度(RLD)定量技术,获取大田条件不同种间距单株稻茬麦RLD在不同土层的分布特征和相对根长密度(NRLD)分布模型。【方法】选用宁麦13为试验材料,采用免耕等距单粒线播法,分别于2020和2021年进行稻茬小麦的免耕种植试验,设置单粒精播种间距1.5、3.0、4.5、6.7、9.0 cm共5个处理(JT1.5、JT3、JT4.5、JT6.7、JT9),行距20 cm。RLD分析采用根系构型数字化仪实测根系3D拓扑结构配合Pro-E软件数字重构,辅以MATLAB实现基于“空间voxel元技术”的根系生长空间3 cm3精细分割和定量分析,跟踪各土层RLD分布动态和NRLD模型。【结果】不同处理的单株稻茬麦根长密度随土层深度的增加而逐步减小,0—9 cm土层深度内分布的稻茬麦根系达总根量95%以上,超过9 cm土层深度小麦根系急剧减小;单株小麦根系扩展面积随土层深度的增加先增加后减小,根构型以种子位作为中心点向四周拓展,且表现...

关 键 词:稻茬麦  种间距  根系分割  根长密度  模型
收稿时间:2022-08-08

Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance
SUN QiBin,WANG JianNan,LI YiNian,HE RuiYin,DING QiShuo.Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance[J].Scientia Agricultura Sinica,2023,56(8):1456-1470.
Authors:SUN QiBin  WANG JianNan  LI YiNian  HE RuiYin  DING QiShuo
Abstract:【Objective】In order to quantify the influence of seed-to-seed distance on wheat root development in soil layers under single seed precision sowing, an integrated technique combining root architecture digitizer and MATLAB simulation was developed to quantify wheat root length density (RLD) and relative root length density (NRLD), as well as related models in each soil layer in the field.【Method】Ningmai 13 was used as experiment marital and the seed was sown with single seed precision sowing method in no-till paddy soil. The experiment was carried out in 2020 and 2021, respectively. Five treatments (JT1.5, JT3, JT4.5, JT6.7, and JT9) with row spacing of 1.5, 3.0, 4.5, 6.7 and 9.0 cm were introduced for field stand control. RLD was analyzed with combined technologies, i.e. root architecture digitizer and 3D root system architecture reconstruction with Pro-E, supplemented with MATLAB simulation, which facilitated fine segmentation and analysis of the rhizosphere dynamics under soil space voxel resolution of 3 mm3, and this further results quantified RLD distribution dynamics and the development of NRLD models along soil layers.【Result】The post-paddy wheat RLD decreased gradually along the soil layers under different treatments. As much as 95% of the root system was confined within the top soil layer in 0-9 cm, below which, root length decreased rapidly. The wheat root expansion area of a single plant first increased along the soil layers and then decreased. Root expansion started from the seed site as its central point, and revealed an obvious directional and constraining effects induced by the soil environment. With the increase of seed-to-seed distance, wheat RLD experienced first an increasing and then a decreasing trend, and the maximum value of which was found at JT4.5. The expansion area of wheat RLD increased with the increased seed-to-seed distance, and the maximum value of which was 22 972 mm2. Either the too high or the too low density stand was found adversely impacts the efficiency of root configuration. Only the most suitable sowing density led to the best 3D distribution of wheat root system, which has been considered as the primary mechanism for efficient utilization of soil spatial resources. The NRLD distribution within 0-20 cm soil layers satisfied both cubic polynomial and exponential models well (R2>0.99, RMSE<0.1), but when considered the field state root system architecture, it was found that the exponential model was more realistic and fit the field wheat RLD the best along the soil layers.【Conclusion】An integrated technique combining root architecture digitizer and MATLAB simulation was developed to quantify wheat RLD and NRLD in the field, which satisfactorily illustrated the influence of seed-to-seed distance on RLD and NRLD along the soil layers. The results showed that the proposed method could be applicable for studies of wheat precision cultivation, precise water and fertilizer management, root configuration regulation and so on in the future.
Keywords:post-paddy rice  seed-to-seed distance  root segmentation  root length density  model development  
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号