首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pharmacokinetic interpretation of erythromycin and tylosin activity in serum after intravenous administration of a single dose to cows.
Authors:J D Baggot  D A Gingerich
Abstract:The distribution and elimination kinetics of erythromycin and tylosin, which are macrolide antibiotics, were studied in healthy cows. A single dose (12-5 mg/kg) of drug was administered as an intravenous bolus, and blood samples were collected at precisely timed intervals. The standard cylinder plate bioassay method using Sarcina lutea as test organism was employed to determine antibiotic activity in the serum. The results suggested that these drugs are distributed in at least two kinetically distinct body compartments. By use of established mathematical techniques, values were assigned to the individual rate constants controlling distribution between the central and peripheral compartments and to the rate constant controlling overall elimination (beta) of each drug from the body. The calculated overall tissue to serum drug level ratios (k12/k21) after apparent distribution equilibrium was attained were 2-28 and 2-05 for erythromycin and tylosin, respectively. The half-life (mean+/-SD) of erythromycin was 3-16 h+/-0-44, while that of tylosin was 1-62 h+/-0-17. The total body clearance (ml/kg/min) values were 2-88+/-0-47 for erythromycin and 7-8+/-2-95 for tylosin. Analogue computer simulated curves of the antibiotic levels in the central and tissue compartments as wel as an elimination curve were generated. The tissue level of erythromycin reached a peak of 43 per cent of the dose at 67 min. At 6 h, the percentages of the dose of erythromycin in the central and tissue compartments and eliminated were 6, 19 and 75, respectively. The peak level of tylosin in the tissue compartment (26-5 per cent of the dose) was present at 30 min. At 4 h, 1 and 5 per cent of the dose were contained in the central and peripheral compartments, respectively, while 94 per cent had been eliminated. This single dose study provides information which is essential for the design of a satisfactory dosage regimen.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号