首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Saccharides of ectomycorrhizal fungal sclerotia as sources of forest soil polysaccharides
Authors:Yuki Sugiura  Makiko Watanabe  Yaya Nonoyama  Nobuo Sakagami  Yong Guo
Institution:1. Department of Agriculture, Meijo University, Nagoya, Japan;2. Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, Japan;3. Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan;4. College of Agriculture, Ibaraki University, Ami, Japan;5. College of Agriculture, Ibaraki University, Ami, Japan
Abstract:ABSTRACT

The neutral monosaccharide composition of forest soils differs from that of non-forest soils suggesting there is an accumulation of microbial saccharides. Ectomycorrhizal (ECM) fungi can be responsible as the fungi are typical in forest soils. We investigated neutral saccharides of ECM fungal sclerotia to determine what part it might play in the origin of forest soil polysaccarides. Sclerotial grain (SG) was collected from the O, A1 and A2 horizons of a soil of subalpine forest of Mt. Ontake, central Japan. Neutral saccharides in soil and SG were analyzed by two step hydrolysis with sulfuric acid and gas-chromatography of alditol acetate derivatives. Saccharides accounted for 6.0?16% of the SG by carbon content. The SG contained predominantly easily hydrolysable (EH)-glucose, which accounted for 75–85% of the composition depending on grain size and the soil horizon, followed by mannose (7.7?15%), galactose (2.2?4.8%) and non-easily hydrolysable (NEH)-glucose (1.7?6.1%). The SG contained all of these sugars irrespective of its size. The SG collected from the A1 and A2 horizons contained all sugar components found in that from the O horizon, except for fucose in that from A2 horizon. The monosaccharide composition of SG indicates that accumulation of ECM fungal sclerotial polysaccharides might have been responsible for enlarging the molar ratios of (galactose + mannose) /(arabinose + xylose) and EH-glucose/NEH-glucose of forest soils. The proportions of SG saccharides relative to soil saccharides were 3.6, 1.2, and 0.83% for the O, A1 and A2 horizons, respectively. These levels of the proportion are considerable as ECM fugal sclerotia are the products of a limited species among hundreds and thousands of microbial species inhabiting forest soils. The sclerotia forming ECM fungal species such as Cenococcum geophilum may be key sources of forest soil polysaccharides.
Keywords:ECM fungal sclerotia  forest soil polysaccharides  monosaccharide composition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号