首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gabor滤波与Tamura纹理特征的板材分类研究
引用本文:白雪冰1,林鑫1,窦延光2,武云鹏1. 基于Gabor滤波与Tamura纹理特征的板材分类研究[J]. 西北林学院学报, 2021, 36(6): 242-246. DOI: 10.3969/j.issn.1001-7461.2021.06.34
作者姓名:白雪冰1  林鑫1  窦延光2  武云鹏1
作者单位:(1.东北林业大学 机电工程学院,黑龙江 哈尔滨 150040;2.陕西省林产品质检与产业服务保障中心,陕西 西安 710082)
摘    要:板材表面的纹理特征是木质板材表面最为直观的特性,同时也是建筑装潢质量和木制品品质的重要评价指标。以中国东北部常见的红松、落叶松、白桦、水曲柳和柞木等5种树种的弦切、径切图像作为研究对象,提出一种基于多通道Gabor滤波和Tamura纹理特征的板材纹理特征提取方法,克服了传统方法在提取样本图像的全局特征时对局部纹理特征不敏感的问题。具体是将基于视觉心理学的Tamura纹理特征与Gabor滤波器进行结合,在不同频率、不同方向上共24组滤波器的虚部卷积图像上进行纹理特征参数提取,结合上述的纹理特征参数在BP神经网络、KNN和支持向量机分类器上进行分类试验,最佳特征参数体系的识别率达97.8%。

关 键 词:木材纹理  Gabor滤波  Tamura纹理特征  模式识别

 Plank Classification Based on Gabor Filtering and Tamura Texture Features
BAI Xue-bing1,LIN Xin1,DOU Yan-guang2,WU Yun-peng1.  Plank Classification Based on Gabor Filtering and Tamura Texture Features[J]. Journal of Northwest Forestry University, 2021, 36(6): 242-246. DOI: 10.3969/j.issn.1001-7461.2021.06.34
Authors:BAI Xue-bing1  LIN Xin1  DOU Yan-guang2  WU Yun-peng1
Affiliation:(1.College of Machinery Electricity,Northeast Forestry University,Harbin 150040,Heilongjiang,China; 2.Shaanxi Forest Product Quality Inspection and Industrial Service Guarantee Center,Xi’an 710082,Shaanxi,China)
Abstract:The texture feature of the surface of a board is the most intuitive characteristics of the wooden board,and it is also an important evaluation index for the quality of building decoration and wood products.In this paper,the string cutting and diameter cutting images of five commonly occurring tree species in northeastern China were taken as the research objects,including Pinus koraiensis,Larix gmelinii,Betula platyphylla,Fraxinus mandshurica,and Xylosma racemosum.A method of extracting the plate texture features based on multi-channel Gabor filter and Tamura texture features was proposed,which overcame the problem of insensitive to local texture features when extracting the global features of sample images used in traditional method.Specifically,the Tamura texture feature based on visual psychology was combined with the Gabor filter,and the texture feature parameters were extracted on the imaginary convolution image of a total of 24 filters in different frequencies and different directions,combined with the above texture feature parameters,the classification experiment was carried out on the BP neural network,KNN and support vector machine classifier,and the recognition rate of the best feature parameter system reached 97.8%.
Keywords:wood texture  Gabor filtering  Tamura texture feature  pattern recognition
点击此处可从《西北林学院学报》浏览原始摘要信息
点击此处可从《西北林学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号