首页 | 本学科首页   官方微博 | 高级检索  
     

基于RF和SPA的无人机高光谱估算棉花叶片全氮含量
引用本文:易翔,吕新,张立福,田敏,张泽,范向龙. 基于RF和SPA的无人机高光谱估算棉花叶片全氮含量[J]. 作物杂志, 2023, 39(2): 245-3287. DOI: 10.16035/j.issn.1001-7283.2023.02.035
作者姓名:易翔  吕新  张立福  田敏  张泽  范向龙
作者单位:1石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室,832003,新疆石河子2石河子大学机械电气工程学院,832003,新疆石河子3中国科学院空天信息创新研究院/遥感科学国家重点实验室,100094,北京
基金项目:国家自然科学基金(61962053);新疆生产建设兵团棉花生产大数据关键技术及农业大数据平台研发应用(2018AA004)
摘    要:为分析棉花叶片全氮含量(LNC)与冠层光谱反射特征的关系,实现作物生长过程中氮素水平的快速、准确和无损监测,以石河子大学教学试验场2019年棉花小区试验为基础,选用多元散射校正、SG平滑算法、变量标准化校正和一阶导数4种方法分别对棉花冠层原始光谱进行预处理,使用随机蛙跳(random frog,RF)和连续投影算法(successive projections algorithm,SPA)筛选特征波长并结合偏最小二乘回归法建立棉花LNC光谱估算模型。RF和SPA算法从棉花冠层398~1000nm的光谱中优选5组LNC的敏感特征波段,波段数目下降了93.0%~96.3%,有效降低了光谱的冗余信息;基于SPA算法筛选的敏感波段构建的LNC偏最小二乘回归模型的决定系数和均方根误差分别为0.52和2.55,模型验证的决定系数和均方根误差分别为0.70和2.37,模型具有较好的精度和稳定性,可作为棉花LNC的无人机高光谱估算方法。

关 键 词:棉花  无人机  高光谱  随机蛙跳  连续投影算法  偏最小二乘回归
收稿时间:2021-09-22

Unmanned Aerial Vehicle Hyperspectral Estimation of Nitrogen Content in Cotton Leaves Based on RF and SPA
Yi Xiang,Lü Xin,Zhang Lifu,Tian Min,Zhang Ze,Fan Xianglong. Unmanned Aerial Vehicle Hyperspectral Estimation of Nitrogen Content in Cotton Leaves Based on RF and SPA[J]. Crops, 2023, 39(2): 245-3287. DOI: 10.16035/j.issn.1001-7283.2023.02.035
Authors:Yi Xiang  Lü Xin  Zhang Lifu  Tian Min  Zhang Ze  Fan Xianglong
Affiliation:1Agriculture College of Shihezi University/Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China2College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China3Aerospace Information Research Institute, Chinese Academy of Sciences/State Key Laboratory of Remote Sensing Science, Beijing 100094, China
Abstract:In order to analysis the relationship between cotton leaf nitrogen content (LNC) and canopy spectral reflection characteristics, and achieve rapid, accurate and nondestructive monitoring of nitrogen level in the process of crop growth, based on the cotton plot experiment in Xinjiang Shihezi University Teaching and Experimental Ground in 2019, multiplicative scatter correction, smoothing algorithm, standard normal variate and first derivative were used to pretreat the original spectra of the cotton canopy. Random frog (RF) algorithm and successive projections algorithm (SPA) were used to select characteristic wavelengths and combine with partial least squares regression to establish a spectral prediction model of nitrogen content in cotton leaves. RF and SPA algorithms selected five sensitive characteristic bands of LNC from the cotton canopy spectra of 398-1000nm, and the number of bands decreased by 93.0%-96.3%, which effectively reduced the spectral redundancy information. The determination coefficient and root mean square error of partial least squares regression of LNC constructed based on SPA algorithm screening sensitive band were 0.52 and 2.55, respectively, and the determination coefficient and root mean square error of model verification were 0.70 and 2.37, respectively. The model had good accuracy and stability. It can be used as a method to estimate nitrogen content in cotton leaves by unmanned aerial vehicle.
Keywords:Cotton  Unmanned aerial vehicle (UAV)  Hyperspectral  Random frog  Successive projections algorithm  Partial least squares regression  
点击此处可从《作物杂志》浏览原始摘要信息
点击此处可从《作物杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号