首页 | 本学科首页   官方微博 | 高级检索  
     

覆膜对滴灌棉田土壤水分时空运移的影响
引用本文:王剑,杨北方,陈焕轩,李鑫,冯璐,雷亚平,熊世武,李小飞,王占彪,李亚兵. 覆膜对滴灌棉田土壤水分时空运移的影响[J]. 新疆农业科学, 2021, 58(7): 1255-1264. DOI: 10.6048/j.issn.1001-4330.2021.07.009
作者姓名:王剑  杨北方  陈焕轩  李鑫  冯璐  雷亚平  熊世武  李小飞  王占彪  李亚兵
作者单位:1.中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南安阳 455000;2.棉花生物学国家重点实验室郑州大学研究基地/郑州大学,郑州 450000;3.河北农业大学农学院/河北省作物生长调控重点实验室,河北保定 071001
基金项目:国家重点研发计划“棉花化肥农药减施技术集成研究与示范”(2017YFD0201900)
摘    要:[目的]对比分析覆膜与无膜滴灌棉田土壤水分在时间维度上以及空间维度上的运移规律,为棉花精准灌溉、无膜棉栽培技术提供理论依据与技术支撑.[方法]以膜下滴灌和无膜滴灌作为试验处理,采用5TE土壤水分温度传感器实时采集棉花全生育期土壤水分数据,采用Voxler和Surfer等软件对土壤水分网格数据进行时空插值、3D可视化以及...

关 键 词:覆膜  土壤水分  时空运移  Voxler切片
收稿时间:2020-09-10

Effects of Plastic Film Mulching on Temporal-spatial Migration of Soil Moisture in Drip Irrigation Cotton Fiel
WANG Jian,YANG Beifang,CHEN Huanxuan,LI Xin,FENG Lu,LEI Yaping,XIONG Shiwu,LI Xiaofei,WANG Zhanbiao,LI Yabing. Effects of Plastic Film Mulching on Temporal-spatial Migration of Soil Moisture in Drip Irrigation Cotton Fiel[J]. Xinjiang Agricultural Sciences, 2021, 58(7): 1255-1264. DOI: 10.6048/j.issn.1001-4330.2021.07.009
Authors:WANG Jian  YANG Beifang  CHEN Huanxuan  LI Xin  FENG Lu  LEI Yaping  XIONG Shiwu  LI Xiaofei  WANG Zhanbiao  LI Yabing
Affiliation:1. State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang Henan 455000, China;2. Research Base of State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China;3. Key Laboratory of Crop Growth Regulation/ College of Agronomy, Hebei Agricultural University, Baoding Hebei 071001, China
Abstract:【Objective】 To compare and analyze the law of soil moisture movement in time and space dimension in the film-mulching and non-film drip irrigation cotton fields.【Method】 Film-mulching drip irrigation and non-film drip irrigation were used as experimental treatments. The 5TE soil moisture temperature sensors were used to collect soil moisture data during the whole growth period of cotton in real time, and software such as Voxler and Surfer were used to perform temporal-spatial interpolation, 3D visualization and slicing of the soil moisture grid data.【Result】 The overall soil moisture content of drip irrigation under film-mulching was higher than that of drip irrigation without mulch; In the vertical direction, the migration between the different depths of the drip irrigation under the mulch accelerated, and the soil moisture content increased with the increase of depth. The water content in the bottom soil (80-100 cm) was the largest, while the drip irrigation without mulching the soil moisture exchange was not active, and the moisture was mainly concentrated in the surface soil (0-20 cm); In the horizontal direction, there was no significant difference in the soil moisture content of the near root system and the far root system soil layer between the two treatments; In the time dimension, as the growth process of cotton advanced, the soil moisture content of drip irrigation under the mulch showed an overall upward trend. The rate of soil moisture loss before drip irrigation (June 20) was 3×10-4 m3/(m3·d), and maintained 30×10-4m3/(m3·d) from June 20 to August 11 (after drip irrigation), then increased to 30×10-4m3/(m3·d) from August 11 to August 26 (the last drip irrigation). After that, it was reduced to 30×10-4m3/(m3·d). For the soil moisture of the non-film drip irrigation treatment, it was relatively stable, and the water loss rate before drip irrigation was 0.7×10-4m3/(m3·d), and 10×10-4m3/(m3·d) after drip irrigation.【Conclusion】 The film-mulching treatment can make the soil moisture move down from the surface layer, and the bottom layer (80-100 cm) has the highest volume of water; while in the horizontal direction, there is no significant difference in soil moisture between the near-root side and the far-root side of the two treatments; in the time dimension, the film-mulching treatment increases the fluctuation of soil moisture in drip irrigation cotton fields, which increases the water extinction rate, while the non-film drip irrigation treatment keeps the water extinction rate stable. The results of this study provide the theoretical basis and technical support for the cotton precision irrigation and the filmless cotton cultivation technology.
Keywords:film-mulching  soil moisture  temporal-spatial migration  voxler slice  
点击此处可从《新疆农业科学》浏览原始摘要信息
点击此处可从《新疆农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号