首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of core-shell fluorinated acrylate copolymers and its application as finishing agent for textile
Authors:Shengjie Bai  Wenyu Zheng  Guifang Yang  Fujin Fu  Yifan Liu  Pingfan Xu  Yuancai Lv  Minghua Liu
Institution:1.College of Environment & Resources,Fuzhou University,Fuzhou, Fujian,P. R. China;2.Fujian Provincial Technology Exploitation Base of Biomass Resources,Fuzhou, Fujian,P. R. China;3.National Engineering Laboratory for Clean Technology of Leather Manufacture,Sichuan University,Sichuan,P. R. China
Abstract:Core-shell fluorinated acrylate copolymers emulsion was thus synthesized via the core-shell emulsion polymerization with the fluorinated monomers and acrylic monomers as the main raw materials and its properties were studied. PFMA, the fluorinated acrylate monomers, was synthesized by the esterification of perfluorooctanoyl chloride (PFOC) and hydroxypropyl methacrylate (HPMA). Then the core-shell fluorinated acrylate copolymers emulsion with a poly(MMA/BA/St) core and a poly(PFMA/MMA/BA) shell was synthesized via a starved semi-continuous core-shell emulsion polymerization method by using KPS and sodium bicarbonate as the initiator/buffer system and SDS/Twain 80 as the commixture emulsifier. Lastly, the synthesized copolymers was applied as textile finishing agent for cotton textile. The results of FT-IR and NMR indicated that PFMA had been synthesized as expected and effectively combined in the emulsion copolymerization. The GPC, zeta potential, TEM and DSC showed that the particles had uniform spherical core-shell structure with a diameter of 65-150 nm, and the distribution and emulsion stability was satisfactory. As XPS, FESEM and AFM shown, a hydrophobic structure which was similar to the structure of the lotus leaf were formed and the surface hydrophobicity of the films can be improved. Based on the analysis of DSC, thermal stabilities of the films were enhanced with the increase of fluorine content. Besides, FESEM of textiles showed that the surface of treated textiles were smooth and the edges were clear and visible, indicating significant improvement of the performance on water and oil repellent.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号