首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of freeze-thaw events on mineralization of soil nitrogen
Authors:T H DeLuca  D R Keeney  G W McCarty
Institution:(1) Department of Agronomy, Leopold Center, Iowa State University, 50011 Ames, IA, USA;(2) Present address: USDA-ARS, BARC West, 20705 Beltsville, MD, USA
Abstract:Summary In humid regions of the United States there is considerable interest in the use of late spring (April–June) soil NO 3 concentrations to estimate fertilizer N requirements. However, little information is available on the environmental factors that influence soil NO 3 concentrations in late winter/early spring. The influence of freeze-thaw treatments on N mineralization was studied on several central Iowa soils. The soils were subjected to temperatures of-20°C or 5°C for 1 week followed by 0–20 days of incubation at various temperatures. The release of soluble ninhydrin-reactive N, the N mineralization rate, and net N mineralization (mineral N flush) were observed. The freeze-thaw treatment resulted in a significant increase in the N mineralization rate and mineral N flush. The N mineralization rate in the freeze-thaw treated soils remained higher than in non-frozen soils for 3–6 days when thawed soils were incubated at 25°C and for up to 20 days in thawed soils incubated at 5°C. The freeze-thaw treatments resulted in a significant release of ninhydrin-reactive N. These values were closely correlated with the mineral N flush (r 2=0.84). The release of ninhydrin-reactive N was more closely correlated with biomass N (r 2=0.80) than total N (r 2=0.65). Our results suggest that freeze-thaw events in soil disrupt microbial tissues in a similar way to drying and re-wetting or chloroform fumigation. Thus the level of mineral N released was directly related to the soil microbial biomass. We conclude that net N mineralization following a spring thaw may provide a significant portion of the total NO 3 present in the soil profile.
Keywords:Freezing and thawing of soils  Nitrogen mineralization  Microbial biomass  Ninhydrin-reactive N
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号