首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms responsible for reduced cardiotoxicity of mitoxantrone compared to doxorubicin examined in isolated guinea-pig heart preparations
Authors:Chugun Akihito  Uchide Tsuyoshi  Tsurimaki Chieko  Nagasawa Hajime  Sasaki Takushi  Ueno Shunji  Takagishi Kiyohiko  Hara Yukio  Temma Kyosuke
Institution:Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan.
Abstract:We reported previously that doxorubicin, an anticancer agent that has an anthracycline structure, alters Ca2+ releasing and uptake mechanisms in the sarcoplasmic reticulum of myocardial cells. These effects of doxorubicin are apparently related to its cardiotoxicity. Mitoxantrone is a similar anticancer agent with an anthracenedion structure that has been shown to be significantly less cardiotoxic. In the present study, the effects of mitoxantrone on the functions of the sarcoplasmic reticulum were examined in isolated muscle preparations obtained from the guinea-pig heart. In electrically-stimulated left atrial muscle preparations, incubation in vitro for 4 hr with 30 or 100 microM mitoxantrone significantly prolonged the time to the peak of twitch tension, markedly increased the developed tension observed at lower stimulation frequencies, thereby attenuating the slope of positive force-frequency relationships, and increased the postrest contraction observed after a 60-sec quiescent period. In myocytes isolated from ventricular muscles, 30 microM mitoxantrone increased the peak and the size of intracellular Ca2+ concentrations (Ca2+] i), and prolonged the time to peak Ca2+]i. In skinned muscle fiber preparations obtained from the left ventricular muscle, 30 muM mitoxantrone significantly increased the caffeine-induced contraction without affecting the Ca2+ sensitivity of contractile proteins. These results suggest that mitoxantrone enhances Ca2+ release from the sarcoplasmic reticulum in isolated atrial muscle preparations obtained from the guinea-pig heart. Apparent enhancement of the sarcoplasmic reticulum functions, in contrast to anthracyclines that has been shown to suppress these functions, seems to explain the relative lack of marked cardiotoxicity of mitoxantrone.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号