首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro and in vivo inhibition of chicken brain neurotoxic esterase by leptophos analogs
Authors:Jan Hendrik Reinders  Larry G. Hansen  Robert L. Metcalf  Robert A. Metcalf
Affiliation:1. Department of Veterinary Biosciences, Institute for Environmental Studies University of Illinois, Urbana, Illinois 61801 USA;2. Department of Entomology, Institute for Environmental Studies University of Illinois, Urbana, Illinois 61801 USA;3. School of Medicine, University of Illinois, Urbana, Illinois 61801 USA
Abstract:Inhibition of chicken brain neurotoxic esterase (NTE) by a series of O-halogenated-phenyl-O-alkyl phenylphosphonates was studied in vitro. The “apparent” activity was found to consist of “true” NTE (sensitive to mipafox) plus a minor mipafox-resistant component. The pI50 of O-(2,6-dichlorophenyl) O-methyl phenylphosphonate for “true” NTE was 6.65, whereas it was about 3 for mipafox-resistant hydrolysis of phenyl valerate. This compound is suitable as an alternative to mipafox in the assay of “true” NTE, whereas the use of leptophos oxon gives a less accurate measure. The ethoxy analogs are about as potent in vitro as the corresponding methoxy compounds. Leptophosoxon and ethoxyleptophosoxon are more potent in vitro inhibitors than desbromoleptophosoxon. Within a like group of chlorinated phenylphosphonates, a reasonable correlation between in vitro neurotoxic esterase inhibition of the oxon and in vivo delayed neurotoxic potential by the corresponding phosphonothionate exists. In vivo inhibition of “apparent” NTE from chicken brain, studied 24 hr after an oral dose, is dose dependent for leptophos, ethoxyleptophos, and desbromoleptophos, the latter one being a very potent in vivo inhibitor. Ethoxyleptophos and leptophos have about equal in vivo esterase inhibitory properties. For desbromoleptophos and leptophos there is good agreement between the minimum dose causing delayed neurotoxicity and the dose leading to substantial inhibition of “apparent” NTE; ethoxyleptophos, on the other hand, inhibits the esterase at a dose much lower than the one which is neurotoxic. Several possible explanations for this discrepancy are considered.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号