首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度强化学习的耕作层土壤水分、温度预测
引用本文:刘会丹,万雪芬,崔剑,蔡婷婷,杨义. 基于深度强化学习的耕作层土壤水分、温度预测[J]. 华南农业大学学报, 2023, 44(1): 84-92
作者姓名:刘会丹  万雪芬  崔剑  蔡婷婷  杨义
作者单位:东华大学 信息科学与技术学院, 上海 201620;河北省物联网监控工程技术研究中心, 河北 廊坊 065201;华北科技学院 计算机学院, 河北 廊坊 065201;北京航空航天大学 网络空间安全学院, 北京 100083
基金项目:国家重点研发计划(2018YFC0808306);廊坊市科学技术研究与发展计划(2021011035);秦皇岛市科学技术研究与发展计划(201805A016);河北省物联网监控工程技术研究中心项目(3142018055,3142016020)
摘    要:【目的】利用土壤近表面空气温湿度与土壤内部参数的关联关系对耕作层土壤水分、温度进行精准预测,为实现精细化农业种植管理提供服务。【方法】针对土壤耕作层水分、温度预测在训练集获取与模型验证等方面的实际需求,设计了基于嵌入式系统及窄带物联网(Narrow band internet of things,NB-IoT)无线通信技术的物联网数据采集系统。在此基础上基于深度Q学习(Deep Q network,DQN)算法探索了一种模型组合策略,以长短期记忆(Long short-term memory,LSTM)、门限循环单元(Gated recurrent unit,GRU)与双向长短期记忆网络(Bidirectional long short-term memory,Bi-LSTM)为基础模型进行加权组合,获得了DQN-L-G-B组合预测模型。【结果】数据采集系统实现了对等间隔时间序列环境数据的长时间稳定可靠采集,可以为基于深度学习的土壤水分、温度时间序列预测工作提供准确的训练集与验证集数据。相对于LSTM、Bi-LSTM、GRU、L-G-B等模型,DQN-L-G-B组合模型在2种土壤类型(...

关 键 词:耕作层  土壤水分  土壤温度  物联网  数据采集  深度强化学习  时序预测  精准农业
收稿时间:2022-01-25

Moisture and temperature prediction in tillage layer based on deep reinforcement learning
LIU Huidan,WAN Xuefen,CUI Jian,CAI Tingting,YANG Yi. Moisture and temperature prediction in tillage layer based on deep reinforcement learning[J]. JOURNAL OF SOUTH CHINA AGRICULTURAL UNIVERSITY, 2023, 44(1): 84-92
Authors:LIU Huidan  WAN Xuefen  CUI Jian  CAI Tingting  YANG Yi
Affiliation:College of Information Science and Technology, Donghua University, Shanghai 201620, China;Hebei IoT Monitoring Engineering Technology Research Center, Langfang 065201, China;College of Computer, North China Institute of Science and Technology, Langfang 065201, China;School of Cyber Science and Technology, Beihang University, Beijing 100083, China
Abstract:Objective To accurately predict the water and temperature of the arable layer using the correlation between soil near surface air temperature and humidity and soil internal parameters, and serve for the realization of fine agricultural planting management. Method Aiming at the actual needs of soil tillage layer moisture and temperature prediction in training set acquisition and model verification, an internet of things data acquisition system based on embedded system and narrow band internet of things (NB-IoT) wireless communication technology was designed. A model combination strategy was explored based on the deep Q network (DQN) deep reinforcement learning algorithm. Based on the weighted combination of long short-term memory (LSTM), gated recurrent unit (GRU) and Bi-directional long-short term memory (Bi-LSTM), the DQN-L-G-B combination prediction model was obtained. Result The data acquisition system achieved long-term stable and reliable collection of time series environmental data with equal intervals, and provided accurate training set and verification set data for soil moisture, temperature time series prediction based on deep learning. Compared with models such as LSTM, Bi-LSTM, GRU and L-G-B, the DQN-L-G-B combined model not only lowered the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) in the prediction of moisture and temperature on the tillage layer of the two soil types (loam and sand), but also increased R2 by about 0.1%. Conclusion Through the internet of things data acquisition system and the DQN-L-G-B combined model, the accurate prediction of soil moisture and temperature in the cultivated layer based on soil near surface air temperature and humidity can be effectively completed.
Keywords:Plough layer  Soil moisture  Soil temperature  Internet of things  Deep ?reinforcement learning  NB-IoT network  Time series prediction  Precision agriculture
点击此处可从《华南农业大学学报》浏览原始摘要信息
点击此处可从《华南农业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号