首页 | 本学科首页   官方微博 | 高级检索  
     检索      

植酸对碳酸盐绿锈转化的影响
引用本文:孙亚丽,姜冠杰,江睿,兰帅,李阳,严玉鹏,张嵚.植酸对碳酸盐绿锈转化的影响[J].农业环境科学学报,2023,42(2):393-402.
作者姓名:孙亚丽  姜冠杰  江睿  兰帅  李阳  严玉鹏  张嵚
作者单位:江西农业大学国土资源与环境学院, 南昌 330045;江西省鄱阳湖流域农业资源与生态重点实验室, 南昌 330045
基金项目:国家自然科学基金项目(42167031)
摘    要:为研究植酸(IHP)对绿锈转化过程及机制的影响,通过空气氧化法合成碳酸盐绿锈GR1 (CO32-)],并利用X射线衍射、衰减全反射-傅里叶变换红外光谱、高分辨透射电子显微镜、扫描电子显微镜和能量色散X射线能谱对体系中的固体产物进行分析表征。研究表明:不存在IHP时GR1(CO32-)在5 h左右完全转化为针铁矿,而存在IHP时GR1(CO32-)的转化会受到抑制。在0~0.5mmol·L-1的IHP浓度范围内,GR1 (CO32-)的转化产物为针铁矿,而当IHP浓度高于1.0 mmol·L-1时,GR1 (CO32-)的转化产物为针铁矿和高铁绿锈。IHP对GR1(CO32-)转化机制的影响与其浓度有直接关系,在低浓度IHP(0~0.5 mmol·L-1)条件下,GR1(CO32-)转化过程只涉及溶解-氧化-沉淀(DOP)机制;而高浓度IHP(1.0~5.0 mmol·L-1)体系中,固态氧化(SSO)机制占主导地位,在其转化过程中,一部分GR1(CO32-)通过溶解再沉淀机制转化为针铁矿,一部分GR1(CO32-)通过原位脱质子反应转化为高铁绿锈。此外,在GR1 (CO32-)转化过程中,IHP在GR1 (CO32-)及其转化产物表面会形成内圈络合物和植酸(亚)铁沉淀。总体而言,IHP会抑制GR1 (CO32-)的溶解再沉淀转化机制,阻碍针铁矿的结晶和晶体生长,且抑制作用与IHP浓度呈正相关。

关 键 词:碳酸盐绿锈  植酸  转化  针铁矿  高铁绿锈
收稿时间:2022/6/24 0:00:00

Effects of myo-inositol hexakisphosphate on the transformation of carbonate green rust
SUN Yali,JIANG Guanjie,JIANG Rui,LAN Shuai,LI Yang,YAN Yupeng,ZHANG Qin.Effects of myo-inositol hexakisphosphate on the transformation of carbonate green rust[J].Journal of Agro-Environment Science( J. Agro-Environ. Sci.),2023,42(2):393-402.
Authors:SUN Yali  JIANG Guanjie  JIANG Rui  LAN Shuai  LI Yang  YAN Yupeng  ZHANG Qin
Institution:College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China;Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Nanchang 330045, China
Abstract:Green rust exists widely in paddy soil, sediment, groundwater, and other environments, and its transformation is affected by various environmental geochemical factors. Carbonate green rustGR1(CO32-)] was synthesized by air oxidation, and the effect of organic phosphorus(myo-inositol hexakisphosphate, IHP) on the transformation process and mechanism of green rust was investigated. The solid products in the system were characterized by X-ray diffraction, attenuated total reflection Fourier-transform infrared spectroscopy, highresolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that GR1(CO32-) was completely converted to goethite in approximately 5 h in the absence of IHP, while the transformation of GR1(CO32-) was inhibited in the presence of IHP. In the presence of 0-0.5 mmol·L-1 IHP, the transformation product of GR1(CO32-) was goethite, while GR1(CO32-) was transformed into goethite and ferric green rust when the concentration of IHP was above 1.0 mmol·L-1. The effect of IHP on the conversion mechanism of GR1(CO32-) was directly related to its concentration. In a system with a low concentration of IHP(0-0.5 mmol·L-1), the conversion process of GR1(CO32-) only involved the dissolution-oxidation-precipitation(DOP) mechanism. However, in a system with a high concentration of IHP(1.0-5.0 mmol·L-1), the solid-state oxidation(SSO) mechanism dominated, and GR1(CO32-) was partially converted into goethite through a dissolution reprecipitation mechanism, and GR1(CO32-) was partially transformed into ferric green rust via an in situ deprotonation reaction. In addition, during the transformation of GR1(CO32-), IHP formed inner-sphere complexes or(ferro) ferric phytate precipitates on the surface of GR1(CO32-) and its transformation products. Overall, IHP inhibites the dissolutionreprecipitation transformation mechanism of GR1(CO32-) and hinderes the crystallization and crystal growth of goethite, and the inhibition is positively correlated with the concentration of IHP.
Keywords:carbonate green rust  myo-inositol hexakisphosphate  transformation  goethite  ferric green rust
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号