首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Use of optimal control in deriving water conserving irrigation schedules based on state events
Institution:1. Department of Agricultural Economics, University of Nevada, Reno, NV 89557 U.S.A.;2. Department of Agricultural Economics, Oklahoma State University, Stillwater, OK U.S.A.;1. Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 78850, Thiverval-Grignon, France;2. Arvalis-Institut-du-Végétal, Station Expérimentale de la Jaillière, 44370, La Chapelle Saint-Sauveur, France;3. INRAE, UR 767, Ecodéveloppement, Domaine St Paul, Site Agroparc, 228 Route de l''Aérodrome, CS 40509, 84914, Avignon, Cedex 9, France;4. Université Paris-Saclay, AgroParisTech, INRAE, UMR SAD-APT, 78850 Thiverval-Grignon, France;5. INRA, UR0875 MIAT, INRA Auzeville, Chemin de Borde-Rouge, 31326, Castanet Tolosan, France;1. Department of Agricultural and Resource Economics, Colorado State University, B304 Clark Building, 1172 Campus Delivery, Fort Collins, CO 80523, United States;2. USDA-ARS Water Management and Systems Research Unit, 2150 Centre Ave, Bldg D, Suite 320, Fort Collins, CO 80526, United States;3. Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, United States;1. CIRAD, UMR SELMET, Dakar, Senegal;2. SELMET, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France;3. Dp PPZS, Pastoral Systems and Dry Lands –Institut de recherche sénégalais Hann, BP2057, Dakar, Senegal;4. INRA, UMR SELMET, F-34398, Montpellier, France;5. IRIT CNRS, Université de Toulouse, F-31062, Toulouse, France;6. IRD, UMR Eco&Sols, F-34060, Montpellier, France;7. LMI IESOL, Centre ISRA IRD Bel Air, BP1386, Dakar, Senegal;1. Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile;2. Facultad de Arquitectura e Instituto de Estudios Urbanos y Territoriales, Pontificia Universidad Católica de Chile, El Comendador, 1916, Santiago, Chile;3. Centro de Desarrollo Urbano Sustentable CONICYT/FONDAP/15110020, Av. Vicuña Mackenna, 4860, Santiago, Chile;4. Departamento de Economía y Administración de Empresas, Universidad de Málaga, Campus El Ejido, 29071, Málaga, Spain;5. Departamento de Economía Aplicada (Matemáticas), Universidad de Málaga, Campus El Ejido, 29071, Málaga, Spain;6. Departamento de Matemáticas para la Economía y la Empresa, Universidad de Valencia, Campus dels Tarongers, 46022, Valencia, Spain;1. US Department of Agriculture-Agricultural Research Service, Plant Stress and Water Conservation Laboratory, Wind Erosion and Water Conservation Research Unit, Lubbock, TX USA;2. US Department of Agriculture-Agricultural Research Service, Plant Stress and Water Conservation Laboratory, Plant Stress and Germplasm Development Research Unit, Lubbock, TX USA;3. Department of Agricultural and Applied Economics, Texas Tech University and Texas A&M Agrilife Research, Lubbock, TX USA;1. Texas A&M AgriLife Research (Texas A&M University System), P.O. Box 1658, Vernon, TX 76385, USA;2. Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd (TAMU MS 2474), College Station, TX 77843, USA
Abstract:Continued irrigated production in the Oklahoma Panhandle is threatened by the declining groundwater supply and costs of pumping groundwater. A computerized grain sorghum plant-growth model using daily weather observations and optimal control theory is used to derive irrigation schedules based on soil moisture deficiency at different stages of grain sorghum plant growth. When the optimal control irrigation schedules are compared to a fixed day interval-scheduled irrigation practice, the optimal control irrigation schedules reduce water and energy use while maintaining, and even increasing, net returns to the producer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号