首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pyrite oxidation in a sediment sample of an open-cut brown coal mine: mineral formation,buffering of acidity and modeling of cations and sulfate
Authors:Bernard Ludwig  Partap Khanna  Ralf Balkenhol  Günther Friedrich  Rainer Dohrmann
Abstract:Secondary reactions occurring in pyrite‒containing sediments under aerobic conditions are complex and are not fully understood. Objectives were to (i) study the formation of secondary minerals using x‒ray diffraction (XRD) and ion activity product (IAP) calculations; (ii) to obtain a budget of acidity producing and consuming processes; and (iii) to study the performance of a chemical equilibrium model (including kinetic reactions) using sequential batch experiments with varying input solutions on samples of different pyrite oxidation states. A sediment sample from the open pit coal mine Garzweiler, Germany, was oxidised in the laboratory to obtain four different pyrite oxidation states. Sequential batch experiments were carried out using H2O, 100 mM CaCl2 and 10 mM NaOH as input solutions. A coupled equilibria model was used to describe the experiments. The model (PHREEQC) included inorganic complexation, redox reactions, precipitation/dissolution of sparingly soluble salts, multiple cation exchange and pyrite oxidation using a simple input function. IAP calculations and XRD showed the formation of large amounts of gypsum with increasing pyrite oxidation and for the highly oxidised sample also the formation of hydroniumjarosite. The budget of acidity consuming processes followed the order (i) release of Fe(III) into the solution phase (51% of produced acidity); (ii) Al release into solution and exchangeable phases (probably mainly due to silicate weathering, 22% of produced acidity); and (iii) CEC reducing processes (11% of produced acidity). Modeling of the sequential equilibration experiments with water and CaCl2 gave satisfactory agreements between modeled and measured pH and sorption values, indicating that the main processes governing pH and ion sorption were quite well understood. However, model results of the alkaline additions at larger pyrite oxidation states differed considerably from the experimental results.
Keywords:batch experiment  cation exchange  equilibrium model  gypsum  jarosite  kinetics  PHREEQC  sediment solution  silicate weathering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号